Created
October 31, 2019 19:13
-
-
Save Dabsunter/c4c9861fb9d95c9ce134d9950072c87a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Thu Oct 31 15:22:51 2019 | |
@author: David N. | |
""" | |
import random as rng | |
import numpy as np | |
import time | |
import matplotlib.pyplot as plt | |
def rand_in_range(mini, maxi): | |
return mini + rng.random() * (maxi - mini) | |
def create_fog(n): | |
return [np.array((rand_in_range(-10,10), rand_in_range(-10,10))) for _ in range(n)] | |
def center_circle(A,B,C): | |
I = (A+B)/2 | |
J = (B+C)/2 | |
AB = B-A | |
BC = C-B | |
a = -AB[0]/AB[1] | |
b = -a*I[0]+I[1] | |
ap= -BC[0]/BC[1] | |
bp= -ap*J[0]+J[1] | |
return np.linalg.solve([[a,-1.],[ap,-1]],[-b,-bp]) | |
def dist_sq(A,B): | |
return sum((A-B)**2) | |
def dist(A,B): | |
return np.sqrt(dist_sq(A,B)) | |
n = 2 | |
delta_t = 0. | |
N = create_fog(n) | |
list_n = [] | |
list_delta_t = [] | |
while delta_t < 10.: | |
n += 1 | |
N.append(np.array((rand_in_range(-10,10), rand_in_range(-10,10)))) | |
start = time.time() | |
max_A,max_B,max_C = (),(),() | |
max_O = () | |
max_r = 0. | |
for i in range(n-2): | |
for j in range(i+1, n-1): | |
for k in range(j+1, n): | |
A,B,C = N[i],N[j],N[k] | |
valid = True | |
O = center_circle(A,B,C) | |
r_sq = dist_sq(O,A) | |
for P in N: | |
if (P == A).all() or (P == B).all() or (P == C).all(): | |
continue | |
valid = dist_sq(O,P) >= r_sq | |
if not valid: | |
break | |
r = np.sqrt(r_sq) | |
if valid and r > max_r: | |
max_A,max_B,max_C = A,B,C | |
max_O = O | |
max_r = r | |
delta_t = time.time() - start | |
print("Nuage de taille ", n, " résolu en ", delta_t, "s") | |
list_n.append(n) | |
list_delta_t.append(delta_t) | |
plt.plot(list_n, list_delta_t, label='mesure') | |
coef = list_delta_t[-1] / (list_n[-1]**2) | |
plt.plot(list_n, [coef*(n**2) for n in list_n], label='n^2') | |
coef = list_delta_t[-1] / (list_n[-1]**3) | |
plt.plot(list_n, [coef*(n**3) for n in list_n], label='n^3') | |
coef = list_delta_t[-1] / (list_n[-1]**4) | |
plt.plot(list_n, [coef*(n**4) for n in list_n], label='n^4') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment