Created
January 1, 2018 16:59
-
-
Save DanHickstein/03105bf4ba33b929247492eb2e1fbe9f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% \documentclass{article} | |
\documentclass[preview]{standalone} | |
\usepackage[utf8]{inputenc} | |
\usepackage{amsmath} | |
\usepackage{amssymb} | |
\usepackage{color} | |
\renewcommand{\familydefault}{\sfdefault} | |
\definecolor{c1}{RGB}{114,0,172} % primary | |
\definecolor{c2}{RGB}{45,177,93} % true | |
\definecolor{c3}{RGB}{251,0,29} % false | |
\definecolor{c4}{RGB}{18,110,213} % secondary | |
\definecolor{c5}{RGB}{255,160,109} % tertiary | |
\definecolor{c6}{RGB}{219,78,158} % alt-primary | |
\begin{document} | |
The forward Abel transform is given by | |
\begin{equation} \label{eq:forward} | |
\color{c1} F(y,z)\color{black} = \color{c6}2\color{c2} \int_y^{\infty} \color{black} \frac{\color{c4}f(r,z)\color{black}\,\color{c6}r}{\color{c6}\sqrt{r^2-y^2}}\,\color{c6}dr\color{black}. | |
\end{equation} | |
To find the \color{c1} 2D projection\color{black}, break the \color{c4} cylindrically symmetric 3D object \color{black} into \color{c6}thin cylindrical shells\color{black}, and \color{c2} add them all together\color{black}. | |
\\ \\ | |
The inverse Abel transform is given by | |
\begin{equation} \label{eq:inverse} | |
\color{c4}f(r,z)\color{black} = \color{c6}-\frac{1}{\pi} \color{c2}\int_r^{\infty} \color{black} \frac{\color{c5}d\color{c1}F(y,z)\color{black}}{\color{c5}dy}\, \color{c6}\frac{1}{\sqrt{y^2-r^2}}\,dy\color{black}. | |
\end{equation} | |
To reconstruct the \color{c4} 3D object\color{black}, \color{c2} add together \color{c6} thin cylindrical shells \color{black} proportional to the \color{c5}slope \color{black} of the \color{c1} 2D image\color{black}. | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment