Created
April 18, 2019 05:33
-
-
Save DanHickstein/e665e20335f1f4bd472e6d098aef0db6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import abel | |
from abel.tools.analytical import PiecewisePolynomial | |
from itertools import chain | |
import matplotlib.pyplot as plt | |
import numpy as np | |
hw = 1 # peak half-width - Or is this the full-width? | |
step = 10 # center-to-center distance between peaks | |
n = 10 # number of peaks | |
rmax = int(n * step) | |
def peak(i): | |
c = i * step | |
if i: | |
return [(c - hw, c, [1, 1], c, hw), | |
(c, c + hw, [1, -1], c, hw)] | |
else: | |
return [(c, c + hw, [1, -1], c, hw)] | |
comb = PiecewisePolynomial(rmax + 1, rmax, | |
chain(*[peak(i) for i in range(1, n)]), | |
symmetric=False) | |
np.random.seed(4) | |
func = comb.abel + np.random.random(comb.abel.size)*1.2 | |
transforms = [ | |
("basex" , abel.basex.basex_transform , '#880000'), | |
("basex (reg=10)", abel.basex.basex_transform , '#880000'), | |
("direct (gradient)" , abel.direct.direct_transform , '#EE0000'), | |
("direct (finite difference)" , abel.direct.direct_transform , '#EE0000'), | |
("hansenlaw" , abel.hansenlaw.hansenlaw_transform , '#CCAA00'), | |
("onion_bordas" , abel.onion_bordas.onion_bordas_transform, '#00AA00'), | |
("onion_peeling", abel.dasch.onion_peeling_transform , '#00CCFF'), | |
("three_point" , abel.dasch.three_point_transform , '#0000FF'), | |
("two_point" , abel.dasch.two_point_transform , '#CC00FF'), | |
# ("linbasex" , abel.linbasex.linbasex_transform , '#BBBBBB'), | |
] | |
ntrans = len(transforms) # number of transforms | |
fig, axs = plt.subplots(ntrans, 1, figsize=(3.37,7.3), sharex=True, sharey=True) | |
def mysum(x, dx=1, axis=1): | |
# return np.trapz(x) | |
return np.sum(x) | |
def finite_diff(x, dr=1): | |
der = np.zeros_like(x) | |
der[:, :-1] = (x[:, 1:] - x[:, :-1])/dr | |
return der | |
def int_func(x, dx=1, axis=0): | |
return np.sum(x, axis=axis)/dx | |
for num, (ax, (label, transFunc, color)) in enumerate(zip(axs.ravel(), transforms)): | |
print(label) | |
if 'reg' in label: | |
targs = dict(reg=10) | |
elif 'finite' in label: | |
targs=dict(backend='Python', derivative=finite_diff) | |
# targs=dict(backend='C') | |
else: | |
targs = dict() | |
ax.plot(comb.r, comb.func, lw=1) | |
recd = transFunc(func, **targs) | |
ax.plot(comb.r, recd, lw=1, label=label, color=color, ms=2, marker='o') | |
def place_letter(letter, ax, color='k', offset=(0,0)): | |
ax.annotate(letter, xy=(0.02, 0.97), xytext=offset, | |
xycoords='axes fraction', textcoords='offset points', | |
color=color, ha='left', va='top', weight='bold') | |
for ax, letter in zip(axs.ravel(), 'abcdefgh'): | |
ax.legend(fontsize=8, loc='upper right', frameon=False, borderaxespad=0) | |
ax.set_xlim(0,60) | |
ax.set_ylim(-0.2, 1.3) | |
ax.set_yticks([0, 0.5, 1,]) | |
for label in ax.get_xticklabels() + ax.get_yticklabels(): | |
label.set_fontsize(8) | |
ax.grid(alpha=0.2) | |
place_letter(letter+')', ax) | |
axs[-1].set_xlabel('$r$ (pixel)') | |
fig.tight_layout(pad=0) | |
plt.savefig('comb.png', dpi=300) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment