Last active
January 14, 2024 12:38
-
-
Save DanielOX/c03dd64cacc030d3a7d66407993d5fd8 to your computer and use it in GitHub Desktop.
EasyPaisa Text Messages Parser in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import re | |
# Path of Easypaisa archived message text file | |
easypaisa_file = './easypaisa.txt' | |
with open(easypaisa_file) as f: | |
data = f.read() | |
transaction_message = [] | |
for sms in re.split(r"(?:\r?\n){2,}",data.strip()): | |
if(re.search('\d+\.',sms) and 'cashback' not in sms and "Received" in sms ): | |
transaction_message.append(sms) | |
# Pre-Processing | |
def clean_date(date): | |
date = date.lower() | |
return date.replace('[','').replace(']','').strip() | |
def clean_trx(trx): | |
trx = trx.lower() | |
trx = trx.replace('trx id','').replace('.','').strip() | |
if not trx: | |
return "NULL" | |
return trx | |
def clean_amount(amount): | |
amount = amount.lower() | |
amount = re.sub('[^\d.]','',amount).strip() | |
if not amount: | |
return "NULL" | |
if amount[0] == '.': | |
return amount[1:] | |
return amount | |
def clean_sender(sender): | |
sender = sender.lower() | |
sender = re.sub('[^\d]','',sender).strip() | |
if not sender: | |
return "NULL" | |
return sender | |
# Check if found else return NULL | |
def function_extract(reg): | |
return reg.group() if reg else "NULL" | |
# Iterate thorugh text messages and compare | |
for temp in transaction_message: | |
date_r = re.compile(r'\[.*\] | Trx ID \d+\.',flags=re.I | re.X) | |
trx_r = re.compile('Trx\ ID\ \d+\.',flags=re.I | re.X) | |
amount_r = re.compile("Received Rs.?\ \d.*\ from") | |
sender_r = re.compile("from \w.*\ \d+\ ") | |
sender_mobile_r = re.compile("\d+") | |
date = clean_date(function_extract(date_r.search(temp))) | |
tid = clean_trx(function_extract(trx_r.search(temp))) | |
amount = clean_amount(function_extract(amount_r.search(temp))) | |
sender = clean_sender(function_extract(sender_r.search(temp))) | |
# Storing in list of object for later use in dataframe | |
transactions.append({ | |
"date":date, | |
"tid":tid, | |
"amount":amount, | |
"sender": sender | |
}) | |
# Convert to DataFrame | |
df = pd.DataFrame(transactions) | |
# Perform Analysis on DF |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment