Created
April 4, 2013 21:44
-
-
Save DarkDimius/5314650 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from nltk.tokenize import word_tokenize | |
from math import erf, log | |
import sys | |
import numpy | |
eng_filename = sys.argv[1] | |
ru_filename = sys.argv[2] | |
output_filename = sys.argv[3] | |
signal_inf = 1000000000 | |
mean_number_of_symbols_eng_symbol_will_translate_to = 0.96 | |
prob_of_parallel_sentence = 0.9 | |
prob_of_loosing_or_creating_sentence = 0.01 | |
prob_of_translating_single_russian_sentence_as_two = 0.09 | |
def getBackPointers(ru_lines, eng_lines) : | |
D = numpy.ndarray(shape = (len(eng_lines) + 1, len(ru_lines) + 1), dtype = float) | |
D.fill(0) | |
backsteps_en = numpy.ndarray(shape = (len(eng_lines) + 1, len(ru_lines) + 1), dtype = int) | |
backsteps_ru = numpy.ndarray(shape = (len(eng_lines) + 1, len(ru_lines) + 1), dtype = int) | |
# iteration to calculate russian_sentences_translated_to-table | |
for i in range(len(eng_lines) + 1): | |
if i % 50 == 0: | |
print(i / 50) | |
for j in range(len(ru_lines) + 1): | |
if i > 0 or j > 0: | |
D[i][j] = signal_inf | |
for russian_sentences_translated_to in [(1, 0), (1, 2),(1, 1), (0, 1)]: | |
if i - russian_sentences_translated_to[0] >= 0 and j - russian_sentences_translated_to[1] >= 0: | |
D_may_me_less = D[i - russian_sentences_translated_to[0]][j - russian_sentences_translated_to[1]] +\ | |
score(eng_lines[(i-russian_sentences_translated_to[0]):i], ru_lines[(j-russian_sentences_translated_to[1]):j], russian_sentences_translated_to[0], russian_sentences_translated_to[1]) | |
if D_may_me_less < D[i][j]: | |
D[i][j] = D_may_me_less | |
backsteps_en[i][j] = russian_sentences_translated_to[0] | |
backsteps_ru[i][j] = russian_sentences_translated_to[1] | |
else: | |
D[i][j] = 0.0 | |
return (backsteps_en,backsteps_ru) | |
# cumulative distribution function for the standard normal distribution | |
def norm_d(x): | |
return (1.0 + erf(x / (2.0 ** 0.5))) / 2.0 | |
# a priori probability of the translation of k english sentences into l russian | |
def a_priory_probability(k, l): | |
if (k, l) == (1, 1): | |
return prob_of_parallel_sentence | |
else: | |
if (k,l) == (1, 2): | |
return prob_of_translating_single_russian_sentence_as_two | |
else: | |
if (k, l) == (1, 0) or (k, l) == (0, 1): | |
return prob_of_loosing_or_creating_sentence | |
sigma = 7.1 ** 0.5 | |
# score function for a part of alignment: | |
# -log Prob{the piece is good} = -(log Prob{|N(0,1)| > |z|} + log prior_prob{n, m}) | |
# the more it is the less likely is the alignment | |
def score(eng_part, ru_part, n, m): | |
eng_part_words = [] | |
ru_part_words = [] | |
for str in eng_part: | |
eng_part_words += word_tokenize(str) | |
for str in ru_part: | |
ru_part_words += word_tokenize(str) | |
eng_sum_len = 0 | |
ru_sum_len = 0 | |
for token in eng_part_words: | |
eng_sum_len += len(token) | |
for token in ru_part_words: | |
ru_sum_len += len(token) | |
if eng_sum_len > 0: | |
# statics is a test statistic derived from the CLT | |
statics = min(abs(ru_sum_len - mean_number_of_symbols_eng_symbol_will_translate_to * eng_sum_len) / ((eng_sum_len ** 0.5) * sigma), 3) | |
else: | |
statics = 0 | |
return - log(a_priory_probability(n, m)) - log(1 - norm_d(statics) + norm_d(-statics)) | |
def main(): | |
ru_lines = open(ru_filename, "r").readlines() | |
eng_lines = open(eng_filename, "r").readlines() | |
(backpointers_en,backpointers_ru) = getBackPointers(ru_lines, eng_lines) | |
# obtaining alignment pairs | |
alignment = [] | |
(i, j) = (len(eng_lines), len(ru_lines)) | |
while (i, j) != (0, 0): | |
# print i | |
alignment.append((backpointers_en[i][j], backpointers_ru[i][j])) | |
(i,j) = (i - backpointers_en[i][j], j - backpointers_ru[i][j]) | |
alignment.reverse() | |
output = open(output_filename, 'w') | |
for eng_ru in alignment: | |
for s in eng_lines[i:(i+eng_ru[0])]: | |
output.write(s.rstrip('\r\n')) | |
output.write(' ||| ') | |
for s in ru_lines[j:(j+eng_ru[1])]: | |
output.write(s.rstrip('\r\n')) | |
output.write('\n') | |
i += eng_ru[0] | |
j += eng_ru[1] | |
output.close() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment