Last active
April 6, 2019 22:10
-
-
Save DavidLutton/328bc003c7632c541c8f68d457d419ee to your computer and use it in GitHub Desktop.
Find regions of a filter
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import skrf as rf | |
import numpy as np | |
from matplotlib import pyplot as plt | |
rf.stylely() | |
def filter_regions(network, minimum=-3, maximum=-30, *, offset=0.0): | |
"""Find regions of a filter. | |
Parameters | |
---------- | |
network : :class:`~skrf.network.Network` object | |
Measured network. | |
minimum : int, float | |
What . | |
maximum : int, float | |
What . | |
offset : int, float | |
What . | |
""" | |
# print(offset) | |
# print(minimum+offset) | |
# param = getattr(network, sparameter) | |
# data = np.where((np.max(network.s_db) - 3) < network.s_db)[0] # move to ~args | |
# data = np.where(stop < network.s_db < start)[0] | |
# data = np.where(np.logical_and(network.s_db < stop, network.s_db < stop)) | |
# data = np.where(np.logical_and(network.s_db > stop, network.s_db < start))[0] | |
# data = np.where(np.logical_and(minimum > network.s_db, maximum < network.s_db))[0] | |
data = np.where(np.logical_and(network.s_db <= minimum+offset, maximum+offset < network.s_db))[0] | |
### data = np.where(np.logical_and(minimum > network.s_db, network.s_db < maximum))[0] | |
# data = np.where(network.s_db > stop)[0] | |
# data = np.where(network.s_db < start)[0] | |
# data = np.where(network.s_db.all(stop < network.s_db < start)) | |
# data = np.where(stop < network.s_db < start)[0] | |
# pprint(data) | |
sequences = np.split(data, np.array(np.where(np.diff(data) > 1)[0]) + 1) | |
# sequences are consecutive clusters of points | |
#pprint(sequences) | |
ranges = [] | |
for seq in sequences: | |
if len(seq) > 1: | |
if np.ptp([minimum, maximum])*0.95 < np.ptp(network[np.min(seq):np.max(seq)].s_db): # only select regions that are at least 95% of wanted np.ptp | |
ranges.append((np.min(seq), np.max(seq))) # spans of points | |
else: | |
ranges.append(seq[0]) # single point | |
# If you have very sparse data you may encouter this | |
# print(ranges) | |
return ranges # ranges are [(start stop),] in terms of data points |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment