Created
August 13, 2024 04:30
-
-
Save Dbhardwaj99/21a83b259e220fdd672e531526961196 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
def apply_frequency_mask(spectrogram, num_masks=1, mask_width=10): | |
""" | |
Apply frequency masking to the input spectrogram. | |
Parameters: | |
spectrogram (numpy array): 2D array representing the audio spectrogram. | |
num_masks (int): Number of frequency masks to apply. | |
mask_width (int): Width of the frequency mask. | |
Returns: | |
numpy array: Spectrogram with frequency masks applied. | |
""" | |
masked_spectrogram = np.copy(spectrogram) | |
num_frequencies = masked_spectrogram.shape[1] | |
for _ in range(num_masks): | |
f_start = np.random.randint(0, num_frequencies - mask_width) | |
masked_spectrogram[:, f_start:f_start + mask_width] = 0 | |
return masked_spectrogram | |
def apply_temporal_mask(spectrogram, num_masks=1, mask_duration=10): | |
""" | |
Apply temporal masking to the input spectrogram. | |
Parameters: | |
spectrogram (numpy array): 2D array representing the audio spectrogram. | |
num_masks (int): Number of temporal masks to apply. | |
mask_duration (int): Duration of the temporal mask. | |
Returns: | |
numpy array: Spectrogram with temporal masks applied. | |
""" | |
masked_spectrogram = np.copy(spectrogram) | |
num_time_steps = masked_spectrogram.shape[0] | |
for _ in range(num_masks): | |
t_start = np.random.randint(0, num_time_steps - mask_duration) | |
masked_spectrogram[t_start:t_start + mask_duration, :] = 0 | |
return masked_spectrogram | |
# Example usage | |
if __name__ == "__main__": | |
# Generating a random spectrogram for demonstration purposes | |
spectrogram = np.random.random((100, 80)) | |
# Applying frequency masking | |
freq_masked_spectrogram = apply_frequency_mask(spectrogram, num_masks=2, mask_width=15) | |
# Applying temporal masking | |
temp_masked_spectrogram = apply_temporal_mask(spectrogram, num_masks=2, mask_duration=20) | |
# Plotting the results | |
plt.figure(figsize=(10, 6)) | |
plt.subplot(1, 3, 1) | |
plt.title("Original Spectrogram") | |
plt.imshow(spectrogram, aspect='auto', origin='lower') | |
plt.colorbar() | |
plt.subplot(1, 3, 2) | |
plt.title("Frequency Masked") | |
plt.imshow(freq_masked_spectrogram, aspect='auto', origin='lower') | |
plt.colorbar() | |
plt.subplot(1, 3, 3) | |
plt.title("Temporal Masked") | |
plt.imshow(temp_masked_spectrogram, aspect='auto', origin='lower') | |
plt.colorbar() | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment