-
-
Save Dbhardwaj99/fa09ab2a817af545d1694eb092b66442 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import sounddevice as sd | |
def generate_random_sound(duration=2.0, sample_rate=16000): | |
""" | |
Generate a random sound. | |
Parameters: | |
duration (float): Duration of the sound in seconds. | |
sample_rate (int): Sample rate of the sound. | |
Returns: | |
numpy.ndarray: The generated sound. | |
""" | |
num_samples = int(duration * sample_rate) | |
sound = np.random.uniform(-1.0, 1.0, num_samples).astype(np.float32) | |
return sound, sample_rate | |
def show_spectrogram(sound, sample_rate): | |
""" | |
Display the spectrogram of the sound. | |
Parameters: | |
sound (numpy.ndarray): The audio sound. | |
sample_rate (int): The sample rate of the audio. | |
""" | |
plt.specgram(sound, NFFT=1024, Fs=sample_rate, noverlap=900, cmap='viridis') | |
plt.title('Spectrogram') | |
plt.xlabel('Time') | |
plt.ylabel('Frequency') | |
plt.colorbar(format='%+2.0f dB') | |
plt.show() | |
def apply_frequency_masking(spectrogram, freq_mask_param): | |
""" | |
Apply frequency masking to the spectrogram. | |
Parameters: | |
spectrogram (numpy.ndarray): The spectrogram. | |
freq_mask_param (int): The parameter for frequency masking. | |
Returns: | |
numpy.ndarray: The masked spectrogram. | |
""" | |
num_freqs, num_times = spectrogram.shape | |
for _ in range(freq_mask_param): | |
f = np.random.randint(0, num_freqs) | |
spectrogram[f, :] = np.min(spectrogram) | |
return spectrogram | |
def apply_time_masking(spectrogram, time_mask_param): | |
""" | |
Apply time masking to the spectrogram. | |
Parameters: | |
spectrogram (numpy.ndarray): The spectrogram. | |
time_mask_param (int): The parameter for time masking. | |
Returns: | |
numpy.ndarray: The masked spectrogram. | |
""" | |
num_freqs, num_times = spectrogram.shape | |
for _ in range(time_mask_param): | |
t = np.random.randint(0, num_times) | |
spectrogram[:, t] = np.min(spectrogram) | |
return spectrogram | |
def play_sound(sound, sample_rate): | |
""" | |
Play the sound using the sounddevice library. | |
Parameters: | |
sound (numpy.ndarray): The audio sound. | |
sample_rate (int): The sample rate of the audio. | |
""" | |
sd.play(sound, sample_rate) | |
sd.wait() # Wait until the sound has finished playing | |
def main(): | |
# Generate a random sound | |
sound, sample_rate = generate_random_sound() | |
# Play the original sound | |
print("Playing original sound...") | |
play_sound(sound, sample_rate) | |
# Display the original spectrogram | |
print("Original Spectrogram:") | |
plt.figure() | |
show_spectrogram(sound, sample_rate) | |
# Compute the spectrogram | |
frequencies, times, spectrogram = plt.specgram(sound, NFFT=1024, Fs=sample_rate, noverlap=900, cmap='viridis') | |
plt.close() # Close the figure created by specgram | |
# Apply frequency masking and display the result | |
print("Frequency Masked Spectrogram:") | |
freq_masked_spectrogram = apply_frequency_masking(spectrogram.copy(), freq_mask_param=10) | |
plt.figure() | |
plt.imshow(freq_masked_spectrogram, cmap='viridis', origin='lower', aspect='auto', | |
extent=[times.min(), times.max(), frequencies.min(), frequencies.max()]) | |
plt.title('Frequency Masked Spectrogram') | |
plt.xlabel('Time') | |
plt.ylabel('Frequency') | |
plt.colorbar(format='%+2.0f dB') | |
plt.show() | |
# Apply time masking and display the result | |
print("Time Masked Spectrogram:") | |
time_masked_spectrogram = apply_time_masking(spectrogram.copy(), time_mask_param=10) | |
plt.figure() | |
plt.imshow(time_masked_spectrogram, cmap='viridis', origin='lower', aspect='auto', | |
extent=[times.min(), times.max(), frequencies.min(), frequencies.max()]) | |
plt.title('Time Masked Spectrogram') | |
plt.xlabel('Time') | |
plt.ylabel('Frequency') | |
plt.colorbar(format='%+2.0f dB') | |
plt.show() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Install required libraries
!pip install numpy matplotlib scikit-learn opencv-python torch torchaudio ipython pandas librosa