Created
September 24, 2013 15:45
-
-
Save DeaconDesperado/6686789 to your computer and use it in GitHub Desktop.
Knapsack algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
from random import random | |
import collections | |
import functools | |
import logging | |
import sys | |
try: | |
level = sys.argv[1] | |
loglevel = getattr(logging,level) | |
except IndexError, AttributeError: | |
loglevel = logging.DEBUG | |
logging.basicConfig(level=loglevel) | |
class memoized(object): | |
"""Memoization, cache output for nested function | |
by arguments""" | |
def __init__(self, func): | |
self.func = func | |
logging.info('Applied memoization to %s',func.__name__) | |
self.cache = {} | |
def __call__(self, *args): | |
if not isinstance(args, collections.Hashable): | |
# uncacheable. a list, for instance. | |
# better to not cache than blow up. | |
return self.func(*args) | |
if args in self.cache: | |
#logging.info('Values %s found in memoized cache' % args) | |
return self.cache[args] | |
else: | |
value = self.func(*args) | |
#logging.info('Caching args %s' % args) | |
self.cache[args] = value | |
return value | |
def __repr__(self): | |
'''Return the function's docstring.''' | |
return self.func.__doc__ | |
def __get__(self, obj, objtype): | |
'''Support instance methods.''' | |
return functools.partial(self.__call__, obj) | |
def knapsack(items, maxweight): | |
""" | |
Solve the knapsack problem by finding the most valuable | |
subsequence of `items` subject that weighs no more than | |
`maxweight`. | |
""" | |
@memoized | |
def bestvalue(i, j): | |
if i == 0: return 0 | |
logging.info('i:%s, j:%s' % (i,j)) | |
value, weight = items[i - 1] | |
if weight > j: | |
logging.info('Weight is greater than j:%s, %s' % (j,weight)) | |
return bestvalue(i - 1, j) | |
else: | |
retval = max(bestvalue(i - 1, j),bestvalue(i - 1, j - weight) + value) | |
logging.info('weight < j:%s, solve for %s' % (j, retval)) | |
return retval | |
j = maxweight | |
result = [] | |
for i in xrange(len(items), 0, -1): | |
if bestvalue(i, j) != bestvalue(i - 1, j): | |
logging.info('Result found %s, %s' % items[i-1]) | |
result.append(items[i - 1]) | |
j -= items[i - 1][1] | |
result.reverse() | |
return bestvalue(len(items), maxweight), result | |
if __name__ == '__main__': | |
items = [] | |
for i in xrange(3): | |
(value,weight) = math.ceil(random()*100),math.ceil(random()*10) | |
items.append((value,weight)) | |
logging.info('%s items, %s capacity' % (len(items), 8)) | |
print knapsack(items,8) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment