Created
March 5, 2019 06:27
-
-
Save DecentMakeover/23d9b84b698f7acf6ccb85ff201205d7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Variable | |
import tools.utils as utils | |
import tools.dataset as dataset | |
from PIL import Image | |
from collections import OrderedDict | |
import cv2 | |
from models.moran import MORAN | |
model_path = '/home/ryan/Downloads/2000_0.8805.pth' | |
img_path = '/media/ryan/shakira/MORAN_v2/recognition_test_data/10.png' | |
# alphabet = '0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:$' | |
alphabet = '0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:/:$' | |
cuda_flag = False | |
if torch.cuda.is_available(): | |
cuda_flag = True | |
MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, CUDA=cuda_flag) | |
MORAN = MORAN.cuda() | |
else: | |
MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, inputDataType='torch.FloatTensor', CUDA=cuda_flag) | |
print('loading pretrained model from %s' % model_path) | |
if cuda_flag: | |
state_dict = torch.load(model_path) | |
else: | |
state_dict = torch.load(model_path, map_location='cpu') | |
MORAN_state_dict_rename = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k.replace("module.", "") # remove `module.` | |
MORAN_state_dict_rename[name] = v | |
MORAN.load_state_dict(MORAN_state_dict_rename) | |
for p in MORAN.parameters(): | |
p.requires_grad = False | |
MORAN.eval() | |
# import pdb | |
# pdb.set_trace() | |
converter = utils.strLabelConverterForAttention(alphabet, ':') | |
transformer = dataset.resizeNormalize((100, 32)) | |
image = Image.open(img_path).convert('L') | |
image = transformer(image) | |
print(type(image)) | |
print(image.type()) | |
print('6666666666666666666666666666666666') | |
if cuda_flag: | |
image = image.cuda() | |
image = image.view(1, *image.size()) | |
image = Variable(image) | |
text = torch.LongTensor(1 * 5) | |
length = torch.IntTensor(1) | |
text = Variable(text) | |
length = Variable(length) | |
max_iter = 20 | |
t, l = converter.encode('0'*max_iter) | |
utils.loadData(text, t) | |
utils.loadData(length, l) | |
output = MORAN(image, length, text, text, test=True, debug=True) | |
preds, preds_reverse = output[0] | |
demo = output[1] | |
_, preds = preds.max(1) | |
_, preds_reverse = preds_reverse.max(1) | |
sim_preds = converter.decode(preds.data, length.data) | |
sim_preds = sim_preds.strip().split('$')[0] | |
sim_preds_reverse = converter.decode(preds_reverse.data, length.data) | |
sim_preds_reverse = sim_preds_reverse.strip().split('$')[0] | |
print('\nResult:\n' + 'Left to Right: ' + sim_preds + '\nRight to Left: ' + sim_preds_reverse + '\n\n') | |
# cv2.imshow("demo", demo) | |
# cv2.waitKey() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment