Created
May 6, 2020 11:29
-
-
Save Deniallugo/3d4b4ea683a812fc1360b88605e4d204 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import enum | |
class Phase(enum.Enum): | |
train = 1 | |
val = 2 | |
def prepare_data_loader(phase: Phase, model): | |
if phase == Phase.train: | |
dataloader = train_loader | |
model.train() # Set model to training mode | |
else: | |
dataloader = test_loader | |
model.eval() # Set model to evaluate mode | |
def set_numerical_instability(phase: Phase, model): | |
pred_original, confidence = model(images) | |
pred_original = F.softmax(pred_original, dim=-1) | |
confidence = torch.sigmoid(confidence) | |
# Make sure we don't have any numerical instability | |
if phase == phase.train: | |
eps = 1e-12 | |
pred_original = torch.clamp(pred_original, 0.0 + eps, 1.0 - eps) | |
confidence = torch.clamp(confidence, 0.0 + eps, 1.0 - eps) | |
if baseline: | |
# Randomly set half of the confidences to 1 (i.e. no hints) | |
b = torch.bernoulli(torch.Tensor(confidence.size()).uniform_(0, 1)).to( | |
device | |
) | |
conf = confidence * b + (1 - b) | |
pred_new = pred_original * conf.expand_as(pred_original) + labels_onehot * ( | |
1 - conf.expand_as(labels_onehot) | |
) | |
pred_original = torch.log(pred_new) | |
else: | |
pred_original = torch.log(pred_original) | |
return pred_original, confidence | |
# FIXME find better name | |
def backward(xentropy_loss, lmbda, baseline, confidence_loss): | |
if baseline: | |
total_loss = xentropy_loss | |
else: | |
total_loss = xentropy_loss + (lmbda * confidence_loss) | |
if budget > confidence_loss.item(): | |
lmbda = lmbda / 1.01 | |
elif budget <= confidence_loss.item(): | |
lmbda = lmbda / 0.99 | |
total_loss.backward() | |
optimizer.step() | |
def find_conf(running_confidence): | |
conf_min = np.min(np.array(running_confidence)) | |
conf_max = np.max(running_confidence) | |
conf_avg = np.mean(running_confidence) | |
return conf_min, conf_avg, conf_max | |
def run_phase(model, loss, optimizer, scheduler, epoch, phase: Phase): | |
dataloader = prepare_data_loader(phase, model) | |
running_loss = 0.0 | |
running_acc = 0.0 | |
running_confidence = [] | |
running_conf_loss = 0.0 | |
# Iterate over data. | |
for images, labels in tqdm(dataloader): | |
images = images.to(device) | |
labels = labels.to(device) | |
labels_onehot = encode_onehot(labels, num_classes) | |
optimizer.zero_grad() | |
# forward and backward | |
with torch.set_grad_enabled(phase == Phase.train): | |
pred_original, confidence = set_numerical_instability(phase, model) | |
xentropy_loss = loss(pred_original, labels) | |
confidence_loss = torch.mean(-torch.log(confidence)) | |
if phase == Phase.train: | |
backward(xentropy_loss, lmbda, baseline, confidence_loss) | |
pred_idx = pred_original.argmax(dim=1) | |
# TODO move to another function | |
running_loss += xentropy_loss.item() | |
running_acc += (pred_idx == labels.data).float().mean() | |
running_conf_loss += confidence_loss.item() | |
if phase == "val": | |
running_confidence.extend(confidence.cpu().numpy()) | |
epoch_loss = running_loss / len(dataloader) | |
epoch_acc = running_acc / len(dataloader) | |
epoch_conf_loss = running_conf_loss / len(dataloader) | |
print( | |
f"\n {phase} Loss: {epoch_loss:.4f} Confidence Loss: {epoch_conf_loss:.4f} Acc: {epoch_acc:.4f}", | |
flush=True, | |
) | |
if phase == Phase.val: | |
conf_min, conf_avg, conf_max = find_conf(running_confidence) | |
print( | |
f"conf_min: {conf_min:.3f}, conf_max: {conf_max:.3f}, conf_avg: {conf_avg:.3f}" | |
) | |
write_epoch(epoch, epoch_loss, epoch_conf_loss, epoch_acc) | |
save_torch(accuracy, log_loss, conf_loss) | |
if phase == Phase.train: | |
scheduler.step(epoch) | |
return epoch_acc.cpu(), epoch_loss, epoch_conf_loss | |
def write_epoch(epoch, loss, conf_loss, acc): | |
writer.add_scalar(f"Loss/{phase}", loss, epoch) | |
writer.add_scalar(f"ConfLoss/{phase}", conf_loss, epoch) | |
writer.add_scalar(f"Accuracy/{phase}", acc, epoch) | |
def save_torch(accuracy, log_loss, conf_loss): | |
data = { | |
"accuracy": accuracy, | |
"loss": log_loss, | |
"confidence_loss": conf_loss, | |
} | |
if not os.path.isdir("accs_losses"): | |
os.mkdir("accs_losses") | |
torch.save(data, f"./accs_losses/{phase}_accs_losses_{budget}.pth") | |
def train_model(model, loss, optimizer, scheduler, num_epochs): | |
lmbda = 0.1 | |
accuracy = np.array([]) | |
log_loss = np.array([]) | |
conf_loss = np.array([]) | |
for epoch in range(start_epoch, start_epoch + num_epochs): | |
print("Epoch {}/{}:".format(epoch, num_epochs - 1), flush=True) | |
# Each epoch has a training and validation phase | |
acc, loss, conf_loss = run_phase( | |
model, loss, optimizer, scheduler, epoch, Phase.train | |
) | |
accuracy = np.append(accuracy, acc) | |
log_loss = np.append(log_loss, loss) | |
conf_loss = np.append(conf_loss, conf_loss) | |
acc, loss, conf_loss = run_phase( | |
model, loss, optimizer, scheduler, epoch, Phase.train | |
) | |
accuracy = np.append(accuracy, acc) | |
log_loss = np.append(log_loss, loss) | |
conf_loss = np.append(conf_loss, conf_loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment