Created
September 15, 2020 12:58
-
-
Save DennySORA/b2c300cbc7de75c0e4c28166241ff07b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
from typing import Tuple | |
def get_reciprocal(value: int, mod: int) -> int: | |
for i in range(1, mod): | |
if (i * value) % mod == 1: | |
return i | |
return -1 | |
def get_gcd(a: int, b: int) -> int: | |
return a if b == 0 else get_gcd(b, a % b) | |
def get_q(p: Tuple[int, int], q: Tuple[int, int], a: int, mod: int) -> Tuple[int, int]: | |
def get_s(p: Tuple[int, int], q: Tuple[int, int], a: int, mod: int) -> int: | |
negative = 1 | |
if p == q: | |
numerator = 3 * (p[0] ** 2) + a | |
denominator = 2 * p[1] | |
else: | |
numerator = q[1] - p[1] | |
denominator = q[0] - p[0] | |
if numerator < 0 or denominator < 0: | |
negative = -1 | |
numerator = abs(numerator) | |
denominator = abs(denominator) | |
gcd = get_gcd(numerator, denominator) | |
numerator = numerator // gcd | |
denominator = denominator // gcd | |
# Get reciprocal | |
reciprocal = get_reciprocal(denominator, mod) | |
return (negative*numerator * reciprocal) % mod | |
s = get_s(p, q, a, mod) | |
xr = (s**2-p[0]-q[0]) % mod | |
yr = (s*(p[0]-xr) - p[1]) % mod | |
return xr, yr | |
def get_xg_or_n(g: Tuple[int, int], xg: Tuple[int, int], x: int, a: int, mod: int) -> Tuple[int, int]: | |
temp = xg | |
symmetry_y = (-1*g[1]) % mod | |
n = 0 | |
while x != 1 or x == -1: | |
n += 1 | |
print(temp, g, x, 7) | |
temp = get_q(temp, g, a, mod) | |
if x != -1: | |
x -= 1 | |
elif g[0] == temp[0] and symmetry_y == temp[1]: | |
return (n, symmetry_y) | |
print(8) | |
return temp | |
def get_point(a: int, b: int, mod: int, lens: int) -> Tuple[int, int]: | |
while True: | |
x = random.randint(10**(lens-1), 10**lens-1) | |
for _ in range(100): | |
y = random.randint(10**(lens-1), 10**lens-1) | |
if (y ** 2 % mod) == ((x**3+x*a+b) % mod): | |
print(9) | |
return x, y | |
def gen_key(g: Tuple[int, int], n: int, a: int, mod: int) -> Tuple[int, Tuple[int, int]]: | |
print(4) | |
private_key = random.randint(0, n) | |
print(5) | |
public_key = get_xg_or_n(g,g, private_key, a, mod) | |
print(6) | |
return private_key, public_key | |
def gen_g(a: int, b: int, mod: int, lens: int) -> Tuple[Tuple[int, int], int]: | |
print(1) | |
g = get_point(a, b, mod, lens) | |
return g,9999 | |
def get_arg(lens:int) -> Tuple[int, int, int]: | |
while True: | |
a = int(input('a:')) | |
b = int(input('b:')) | |
mod = get_prime(lens) | |
if (4 * (a ** 3) + 27 * (b ** 2)) % mod == 0: | |
print('Is not correct number.') | |
else: | |
break | |
return a, b, mod | |
def xor_key(data: int, selfkey: Tuple[int, int]) -> int: | |
return data ^ selfkey[0] ^ selfkey[1] | |
def is_prime_of_miller_rabin_test(n: int, trials_time: int = 5) -> bool: | |
def test_prime_in_100(n: int) -> bool: | |
prime_list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, | |
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] | |
for i in prime_list: | |
if n % i == 0: | |
return True | |
else: | |
return False | |
def convert_n_to_sd(n: int) -> Tuple[int, int]: | |
# n-1 convert to (2^s)*d | |
s = 0 | |
d = n - 1 | |
while True: | |
quotient, remainder = divmod(d, 2) | |
if remainder == 1: | |
return s, d | |
s += 1 | |
d = quotient | |
def test_prime_in_miller_rabin(a: int, d: int, n: int, s: int): | |
if pow(a, d, n) == 1: | |
return False | |
for i in range(s): | |
if pow(a, 2**i*d, n) == n-1: | |
return False | |
return True | |
if test_prime_in_100(n): | |
return False | |
s, d = convert_n_to_sd(n) | |
for _ in range(trials_time): | |
a = random.randint(100, n) | |
if test_prime_in_miller_rabin(a, d, n, s): | |
return False | |
return True | |
def get_prime(lens: int = 30): | |
while True: | |
prime = random.randint(10**(lens-1), 10**lens-1) | |
if len(str(prime)) != lens: | |
continue | |
elif prime & 1 == 0: | |
prime += 1 | |
if is_prime_of_miller_rabin_test(prime): | |
return prime | |
def eccdh(): | |
data = input('輸入訊息:') | |
lens = int(input('金鑰長度:')) | |
a, b, mod = get_arg(lens+1) | |
g, n = gen_g(a, b, mod, lens) | |
a_private, a_public = gen_key(g, n, a, mod) | |
b_private, b_public = gen_key(g, n, a, mod) | |
print(len(str(g)), "g:", g) | |
print(len(str(n)), "n:", n) | |
print(len(str(a_public)), "公開ap:", a_public) | |
print(len(str(b_public)), "公開bp:", b_public) | |
print(len(str(a_private)), "私密a:", a_private) | |
print(len(str(b_private)), "私密b:", b_private) | |
apbp = get_xg_or_n(g,a_public, b_private+1, a, mod) | |
bpap = get_xg_or_n(g,b_public, a_private+1, a, mod) | |
if apbp != bpap: | |
print("APBP Is Not Equal:", apbp, bpap) | |
return False | |
print("=========================") | |
print("mod",mod) | |
print(len(str(g)), "g:", g) | |
print(len(str(n)), "n:", n) | |
print(len(str(a_public)), "公開ap:", a_public) | |
print(len(str(b_public)), "公開bp:", b_public) | |
print(len(str(a_private)), "私密a:", a_private) | |
print(len(str(b_private)), "私密b:", b_private) | |
print(len(str(apbp)), "apbp共同金鑰:", apbp) | |
print(len(str(bpap)), "bpap共同金鑰:", bpap) | |
print("=========================") | |
print("文字內容:", data) | |
origin_plain_text = int.from_bytes(data.encode('utf-8'), 'big') | |
print("原本文字轉成數字:", origin_plain_text) | |
cipher_text = xor_key(origin_plain_text, apbp) | |
print("加密:", cipher_text) | |
plain_text = xor_key(cipher_text, bpap) | |
print("解密:", plain_text) | |
nbytes, rem = divmod(plain_text.bit_length(), 8) | |
if rem: | |
nbytes += 1 | |
decrypt_plain_text = plain_text.to_bytes(nbytes, 'big').decode('utf-8') | |
print("解密後文字內容:", decrypt_plain_text) | |
def main(): | |
eccdh() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment