Last active
January 6, 2020 06:09
-
-
Save DerekChia/f12a4d60b7afc9bcb509595d3b727d6f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def generate_dataset(): | |
x_batch = np.linspace(0, 2, 100) | |
y_batch = 1.5 * x_batch + np.random.randn(*x_batch.shape) * 0.2 + 0.5 | |
return x_batch, y_batch | |
def linear_regression(): | |
x = tf.placeholder(tf.float32, shape=(None, ), name='x') | |
y = tf.placeholder(tf.float32, shape=(None, ), name='y') | |
with tf.variable_scope('lreg') as scope: | |
w = tf.Variable(np.random.normal(), name='W') | |
b = tf.Variable(np.random.normal(), name='b') | |
y_pred = tf.add(tf.multiply(w, x), b) | |
loss = tf.reduce_mean(tf.square(y_pred - y)) | |
return x, y, y_pred, loss | |
def run(): | |
x_batch, y_batch = generate_dataset() | |
x, y, y_pred, loss = linear_regression() | |
optimizer = tf.train.GradientDescentOptimizer(0.1) | |
train_op = optimizer.minimize(loss) | |
with tf.Session() as session: | |
session.run(tf.global_variables_initializer()) | |
feed_dict = {x: x_batch, y: y_batch} | |
for i in range(30): | |
_ = session.run(train_op, feed_dict) | |
print(i, "loss:", loss.eval(feed_dict)) | |
print('Predicting') | |
y_pred_batch = session.run(y_pred, {x : x_batch}) | |
plt.scatter(x_batch, y_batch) | |
plt.plot(x_batch, y_pred_batch, color='red') | |
plt.xlim(0, 2) | |
plt.ylim(0, 2) | |
plt.savefig('plot.png') | |
if __name__ == "__main__": | |
run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello Derek,
Thank you for the detailed explanation. Can you please let me know how to extract the Slope and Bias from the Best Fit Line (Red Line in your plot). Thanks!