Last active
October 29, 2015 18:12
-
-
Save Dewep/1bb39b4961288db3f748 to your computer and use it in GitHub Desktop.
Natural computation assessment #1
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
__author__ = "Maigret Aurelien" | |
""" | |
$> python3 task.py | |
| pos x y | north | east | south | west | nomove | proba | stddev | probabilities | |
| --------- | ------- | ------ | ------- | ------ | -------- | ------- | -------- | --------------- | |
| 7 (0,0) | 0 | 1/4 | 1/6 | 0 | 7/12 | 0.090 | 0.003 | 0.090 0.087 0.094 0.085 0.088 0.090 0.091 0.093 | |
| 8 (0,1) | 0 | 1/4 | 1/6 | 1/4 | 1/3 | 0.046 | 0.002 | 0.047 0.047 0.043 0.047 0.044 0.047 0.050 0.047 | |
| 9 (0,2) | 0 | 0 | 1/6 | 1/4 | 7/12 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | |
| 4 (1,0) | 1/4 | 1/4 | 1/8 | 0 | 3/8 | 0.211 | 0.004 | 0.209 0.211 0.218 0.211 0.216 0.211 0.204 0.210 | |
| 5 (1,1) | 1/4 | 1/4 | 1/8 | 1/4 | 1/8 | 0.116 | 0.003 | 0.114 0.121 0.110 0.117 0.116 0.115 0.117 0.121 | |
| 6 (1,2) | 1/4 | 0 | 1/8 | 1/4 | 3/8 | 0.046 | 0.002 | 0.047 0.044 0.046 0.049 0.048 0.045 0.047 0.044 | |
| 1 (2,0) | 1/4 | 1/4 | 0 | 0 | 1/2 | 0.246 | 0.004 | 0.252 0.248 0.249 0.241 0.243 0.249 0.249 0.240 | |
| 2 (2,1) | 1/4 | 1/4 | 0 | 1/4 | 1/4 | 0.166 | 0.004 | 0.165 0.160 0.164 0.172 0.170 0.162 0.168 0.166 | |
| 3 (2,2) | 1/4 | 0 | 0 | 1/4 | 1/2 | 0.078 | 0.002 | 0.076 0.081 0.076 0.078 0.076 0.080 0.075 0.079 | |
""" | |
from fractions import Fraction | |
import random | |
import math | |
# CONFIGURATIONS | |
probabilities = [ | |
[1.0/6.0, 1.0/6.0, 1.0/6.0], | |
[1.0/9.0, 1.0/9.0, 1.0/9.0], | |
[1.0/18.0, 1.0/18.0, 1.0/18.0] | |
] | |
#probabilities = [ | |
# [1.0/9.0, 1.0/9.0, 1.0/9.0], | |
# [1.0/9.0, 1.0/9.0, 1.0/9.0], | |
# [1.0/9.0, 1.0/9.0, 1.0/9.0] | |
#] | |
timestep = 3 | |
iterations = 10000 | |
tests = 8 | |
precision = 3 | |
# INITIALISATION | |
directions = { | |
"north": lambda x, y: (x, y - 1), | |
"east": lambda x, y: (x + 1, y), | |
"south": lambda x, y: (x, y + 1), | |
"west": lambda x, y: (x - 1, y) | |
} | |
def proba_transition(fr, to): | |
if to[1] < 0 or to[1] >= len(probabilities) or to[0] < 0 or to[0] >= len(probabilities[to[1]]): | |
return 0 | |
return 1/4 * min(1, probabilities[to[1]][to[0]] / probabilities[fr[1]][fr[0]]) | |
square = list() | |
for y in range(len(probabilities)): | |
square.append(list()) | |
for x in range(len(probabilities[y])): | |
pos = x, y | |
nomove = 1 | |
val = {"count": 0, "probabilities": list(), "probability": 0, "stddev": 0} | |
for direction in directions: | |
proba = proba_transition(pos, directions[direction](*pos)) | |
val[direction] = proba | |
nomove -= proba | |
val["nomove"] = nomove | |
square[y].append(val) | |
# CALCULATION | |
def proba_choice(pos, case): | |
proba = list() | |
sum_proba = 0 | |
for key in ["north", "east", "south", "west", "nomove"]: | |
sum_proba += case[key] | |
proba.append((sum_proba, key)) | |
rand = random.random() | |
for elem in proba: | |
if rand <= elem[0]: | |
if elem[1] == "nomove": | |
return pos | |
return directions[elem[1]](*pos) | |
return pos | |
for t in range(tests): | |
for i in range(iterations): | |
pos = (0, 2) | |
for p in range(timestep): | |
pos = proba_choice(pos, square[pos[1]][pos[0]]) | |
square[pos[1]][pos[0]]["count"] += 1 | |
for y in range(len(square)): | |
for x in range(len(square[y])): | |
square[y][x]["probabilities"].append(square[y][x]["count"] / iterations) | |
square[y][x]["count"] = 0 | |
for y in range(len(square)): | |
for x in range(len(square[y])): | |
square[y][x]["probability"] = sum(square[y][x]["probabilities"]) / tests | |
points = map(lambda val: math.pow(val - square[y][x]["probability"], 2), square[y][x]["probabilities"]) | |
square[y][x]["stddev"] = math.sqrt(sum(points) / tests) | |
# DISPLAY | |
print("| pos x y | north | east | south | west | nomove | proba | stddev | probabilities") | |
print("| --------- | ------- | ------ | ------- | ------ | -------- | ------- | -------- | ---------------") | |
for y in range(len(square)): | |
for x in range(len(square[y])): | |
print("| {:^1d} ({:^1d},{:^1d}) | {:^7} | {:^6} | {:^7} | {:^6} | {:^8} | {:^7} | {:^8} | {:s}".format( | |
(2 - y) * 3 + x + 1, | |
y, | |
x, | |
str(Fraction(square[y][x]["north"]).limit_denominator()), | |
str(Fraction(square[y][x]["east"]).limit_denominator()), | |
str(Fraction(square[y][x]["south"]).limit_denominator()), | |
str(Fraction(square[y][x]["west"]).limit_denominator()), | |
str(Fraction(square[y][x]["nomove"]).limit_denominator()), | |
("%%.%df" % precision) % round(square[y][x]["probability"], precision), | |
("%%.%df" % precision) % round(square[y][x]["stddev"], precision), | |
" ".join(map(lambda val: ("%%.%df" % precision) % round(val, precision), square[y][x]["probabilities"])) | |
)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment