Last active
August 11, 2019 10:37
-
-
Save Diyago/807431168cfb56c590f443a2b29f0d79 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def __getitem__(self, index): | |
data_index_min = int(index*self.batch_size) | |
data_index_max = int(min((index+1)*self.batch_size, len(self.image_filenames))) | |
indexes = self.image_filenames[data_index_min:data_index_max] | |
this_batch_size = len(indexes) # The last batch can be smaller than the others | |
X = np.empty((this_batch_size, self.image_size, self.image_size, 3), dtype=np.float32) | |
y = np.empty((this_batch_size, self.image_size, self.image_size, self.nb_y_features), dtype=np.uint8) | |
for i, sample_index in enumerate(indexes): | |
X_sample, y_sample = self.read_image_mask(self.image_filenames[index * self.batch_size + i], | |
self.mask_names[index * self.batch_size + i]) | |
# if augmentation is defined, we assume its a train set | |
if self.augmentation is not None: | |
# Augmentation code | |
augmented = self.augmentation(self.image_size)(image=X_sample, mask=y_sample) | |
image_augm = augmented['image'] | |
mask_augm = augmented['mask'].reshape(self.image_size, self.image_size, self.nb_y_features) | |
# divide by 255 to normalize images from 0 to 1 | |
X[i, ...] = image_augm/255 | |
y[i, ...] = mask_augm | |
else: | |
... | |
return X, y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment