-
-
Save DoctorLai/8149422bb1f2b404d5cfa81c869464e8 to your computer and use it in GitHub Desktop.
C++ Bresenham 3d Line Drawing Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Bresenham3D | |
// | |
// A slightly modified version of the source found at | |
// http://www.ict.griffith.edu.au/anthony/info/graphics/bresenham.procs | |
// Provided by Anthony Thyssen, though he does not take credit for the original implementation | |
// | |
// It is highly likely that the original Author was Bob Pendelton, as referenced here | |
// | |
// ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d | |
// | |
// line3d was dervied from DigitalLine.c published as "Digital Line Drawing" | |
// by Paul Heckbert from "Graphics Gems", Academic Press, 1990 | |
// | |
// 3D modifications by Bob Pendleton. The original source code was in the public | |
// domain, the author of the 3D version places his modifications in the | |
// public domain as well. | |
// | |
// line3d uses Bresenham's algorithm to generate the 3 dimensional points on a | |
// line from (x1, y1, z1) to (x2, y2, z2) | |
// | |
void Bresenham3D(int x1, int y1, int z1, const int x2, const int y2, const int z2, WorldMap *output, int symbol){ | |
int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2; | |
int point[3]; | |
point[0] = x1; | |
point[1] = y1; | |
point[2] = z1; | |
dx = x2 - x1; | |
dy = y2 - y1; | |
dz = z2 - z1; | |
x_inc = (dx < 0) ? -1 : 1; | |
l = abs(dx); | |
y_inc = (dy < 0) ? -1 : 1; | |
m = abs(dy); | |
z_inc = (dz < 0) ? -1 : 1; | |
n = abs(dz); | |
dx2 = l << 1; | |
dy2 = m << 1; | |
dz2 = n << 1; | |
if ((l >= m) && (l >= n)) { | |
err_1 = dy2 - l; | |
err_2 = dz2 - l; | |
for (i = 0; i < l; i++) { | |
output->getTileAt(point[0], point[1], point[2])->setSymbol(symbol); | |
if (err_1 > 0) { | |
point[1] += y_inc; | |
err_1 -= dx2; | |
} | |
if (err_2 > 0) { | |
point[2] += z_inc; | |
err_2 -= dx2; | |
} | |
err_1 += dy2; | |
err_2 += dz2; | |
point[0] += x_inc; | |
} | |
} else if ((m >= l) && (m >= n)) { | |
err_1 = dx2 - m; | |
err_2 = dz2 - m; | |
for (i = 0; i < m; i++) { | |
output->getTileAt(point[0], point[1], point[2])->setSymbol(symbol); | |
if (err_1 > 0) { | |
point[0] += x_inc; | |
err_1 -= dy2; | |
} | |
if (err_2 > 0) { | |
point[2] += z_inc; | |
err_2 -= dy2; | |
} | |
err_1 += dx2; | |
err_2 += dz2; | |
point[1] += y_inc; | |
} | |
} else { | |
err_1 = dy2 - n; | |
err_2 = dx2 - n; | |
for (i = 0; i < n; i++) { | |
output->getTileAt(point[0], point[1], point[2])->setSymbol(symbol); | |
if (err_1 > 0) { | |
point[1] += y_inc; | |
err_1 -= dz2; | |
} | |
if (err_2 > 0) { | |
point[0] += x_inc; | |
err_2 -= dz2; | |
} | |
err_1 += dy2; | |
err_2 += dx2; | |
point[2] += z_inc; | |
} | |
} | |
output->getTileAt(point[0], point[1], point[2])->setSymbol(symbol); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment