- Introduction to Data Science (YouTube: https://www.youtube.com/watch?v=8DvywoWv6fI)
- Statistics for Data Science (YouTube: https://www.youtube.com/watch?v=xxpc-HPKN28)
- Linear Algebra for Data Science (YouTube: https://www.youtube.com/watch?v=ZumgfOei0Ak)
- Probability for Data Science (YouTube: https://www.youtube.com/watch?v=KqokXm8EMm8)
- Machine Learning Fundamentals (YouTube: https://www.youtube.com/watch?v=_Z9TRANg4c0)
- Data Cleaning and Processing with Pandas (GitHub: https://github.com/wesm/pydata-book)
- Web Scraping with Beautiful Soup (YouTube: https://www.youtube.com/watch?v=XQgXKtPSzUI)
- Data Wrangling with Python (GitHub: https://github.com/datawrangling)
- Data Visualization and Exploration (5 days)
- Data Visualization with Matplotlib (GitHub: https://github.com/rougier/matplotlib-tutorial)
- Data Exploration with Pandas (GitHub: https://github.com/jakevdp/PythonDataScienceHandbook)
- Supervised Learning (YouTube: https://www.youtube.com/watch?v=UzxYlbK2c7E)
- Unsupervised Learning (YouTube: https://www.youtube.com/watch?v=J5bXOOmkopc)
- Deep Learning (YouTube: https://www.youtube.com/watch?v=trWrEWfhTVg)
- Ensemble Learning (YouTube: https://www.youtube.com/watch?v=Q5W5k5yZJmY)
- Recommendation Systems (GitHub: https://github.com/aymericdamien/TopDeepLearning)
- Hadoop and Spark (YouTube: https://www.youtube.com/watch?v=fOp-txL90xc)
- NoSQL Databases (YouTube: https://www.youtube.com/watch?v=qI_g07C_Q5I)
- Distributed Systems (YouTube: https://www.youtube.com/watch?v=TlB_eWDSMt4)
- "Data Analysis with Pandas and Matplotlib" (Kaggle tutorial: https://www.kaggle.com/learn/data-visualization)
- "Pandas Data Visualization Tutorial" (Medium article: https://towardsdatascience.com/pandas-data-visualization-8df1a246d58c)
Implement Supervised and Unsupervised Learning Algorithms such as Linear Regression, Random Forest, and K-Means on the Dataset:
- "Scikit-Learn Tutorial" (Scikit-Learn website: https://scikit-learn.org/stable/tutorial/index.html)
- "Introduction to Machine Learning with Python" (book by Andreas Müller and Sarah Guido)
- "Unsupervised Learning with K-Means Clustering" (Kaggle tutorial: https://www.kaggle.com/vjchoudhary7/kmeans-clustering-in-python)
- "PySpark Tutorial" (Medium article: https://towardsdatascience.com/apache-spark-and-pyspark-tutorial-for-beginners-5c5f57e17b24)
- "Apache Spark Machine Learning Tutorial" (Spark website: https://spark.apache.org/docs/latest/ml-guide.html)
- "Building a Recommendation System with Keras" (Medium article: https://towardsdatascience.com/building-a-recommendation-system-using-neural-network-embeddings-1ef92e5c80c9)
- "Collaborative Filtering with PyTorch" (PyTorch tutorial: https://towardsdatascience.com/collaborative-filtering-with-pytorch-7eb45a3c7269)