Created
October 23, 2020 02:28
-
-
Save Dpananos/5f9c026d3b21ec53638f6ce067c20184 to your computer and use it in GitHub Desktop.
Simulation for R squared CI coverage
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.linear_model import LinearRegression | |
from scipy.special import expit, logit | |
from itertools import product | |
import pandas as pd | |
import seaborn as sns | |
def make_regression_data(n, alpha, sigma): | |
x = np.random.normal(size = n) | |
X = x.reshape(-1,1) | |
y = alpha*x + np.random.normal(0, sigma, size = n) | |
return (X, y) | |
def interval(ytest, ypred): | |
residuals = (ytest - ypred) | |
squared_error = np.power(residuals, 2) | |
ci = squared_error.mean() + np.array([-1.96,1.96]) * squared_error.std(ddof=1) / np.sqrt(squared_error.size) | |
ci = ci[::-1] | |
return 1 - ci/np.var(ytest) | |
def do_fit(n, alpha, sigma): | |
X, y = make_regression_data(n, alpha, sigma) | |
model = LinearRegression() | |
model.fit(X,y) | |
ypred = model.predict(X) | |
ci = interval(y, ypred) | |
return ci | |
def experiment(R2, n): | |
sigma = 1 | |
alpha = sigma * np.sqrt( 1/(1-R2) -1 ) | |
num_sims = 5000 | |
confidence_intervals = np.zeros((num_sims,2)) | |
for i in range(num_sims): | |
ci = do_fit(n, alpha, sigma) | |
confidence_intervals[i] = ci | |
lower_limit, upper_limit = confidence_intervals.T | |
coverage = np.mean((lower_limit<R2)&(upper_limit>R2)) | |
realistic = np.mean((lower_limit<0)|(upper_limit>1)) | |
return coverage, realistic | |
R2_values = np.arange(0.01, 0.99, 0.1) | |
sample_sizes = [50, 100, 250, 1000, 10000] | |
params = list(product(R2_values, sample_sizes)) | |
results = [experiment(*p) for p in params] | |
df = pd.DataFrame(params, columns = ['R2','sample_size']) | |
df['R2'] = df.R2.round(2) | |
df['coverage'] = [x[0] for x in results] | |
df['realistic'] = [x[1] for x in results] | |
pivoted_coverage = df.pivot('R2','sample_size','coverage') | |
pivoted_realistic = df.pivot('R2','sample_size','realistic') | |
fig, ax = plt.subplots(dpi = 240) | |
sns.heatmap(pivoted_coverage, square = True, cmap = 'RdBu_r', center = 0.95, ax = ax) | |
plt.tight_layout() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment