Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save DreamLinuxer/5c054ba8d901f0e041f8f9627b21dc3b to your computer and use it in GitHub Desktop.
Save DreamLinuxer/5c054ba8d901f0e041f8f9627b21dc3b to your computer and use it in GitHub Desktop.
⟪ ⇒ ∣
dist ⊚
(uniti₊l ⊚ swap₊) ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ 𝔽 , 𝔽 , 𝔽 ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(uniti₊l ⊚ swap₊) ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(uniti₊l ⊚ swap₊) ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ swap₊) ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
swap₊ ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ η) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
assocl₊ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ id↔) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ id↔) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕
id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ id↔) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(assocr⋆ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗
id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕
id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ factor) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ id↔) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇐ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ id↔) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ factor) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕
id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((assocr⋆ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗
id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(assocr⋆ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ id↔) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(((swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕
id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ id↔) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ id↔) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
assocl₊ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫
⟪ ⇐ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
assocl₊ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ id↔) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ id↔) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕
id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ id↔) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(assocr⋆ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗
id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕
id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ factor) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ id↔) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇐ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ id↔) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ factor) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕
id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((assocr⋆ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗
id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(assocr⋆ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ id↔) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((id↔ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(((swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕
id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ id↔) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ id↔) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
assocl₊ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫
⟪ ⇐ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇐ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ assocl₊) ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
assocl₊ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ swap₊) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊗ id↔) ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝔽))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
((id↔ ⊕ id↔) ⊚
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)))
⊕ id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕
id↔)
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(factor ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((dist ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((swap⋆ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ swap⋆) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ id↔) ⊚
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))
⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕
(id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔)))
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆)
⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔)
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(assocr⋆ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔)))
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊗ id↔) ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((assocl⋆ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗
id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔)
⊚ assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆)
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
(((id↔ ⊚ assocr⋆) ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((assocr⋆ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊚
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))
⊕ id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕
id↔)
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ factor) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊗ id↔) ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(dist ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊕ id↔) ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
id↔ ⊚
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣ (id↔ ⊕ id↔) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫
⟪ ⇒ ∣ id↔ ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽))
⟧⟫
⟪ ⇒ ∣ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷
⟪ ⇒ ∣ (id↔ ⊚ unite₊l) ⊚ factor ⟦ inj₂ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷
⟪ ⇒ ∣ unite₊l ⊚ factor ⟦ inj₂ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷
⟪ ⇒ ∣ id↔ ⊚ factor ⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ ∷
⟪ ⇒ ∣ factor ⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ ∷ ⟪ ⇒ ∣ id↔ ⟦ 𝔽 , 𝕋 , 𝔽 ⟧⟫ ∷ []
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment