Created
May 19, 2020 17:33
-
-
Save DreamLinuxer/5c054ba8d901f0e041f8f9627b21dc3b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
⟪ ⇒ ∣ | |
dist ⊚ | |
(uniti₊l ⊚ swap₊) ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ 𝔽 , 𝔽 , 𝔽 ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(uniti₊l ⊚ swap₊) ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(uniti₊l ⊚ swap₊) ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ swap₊) ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
swap₊ ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ η) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
assocl₊ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ id↔) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ | |
id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr⋆ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ | |
id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ | |
id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ factor) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ id↔) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ id↔) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ factor) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ | |
id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocr⋆ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ | |
id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr⋆ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ | |
id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ id↔) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
assocl₊ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝔽)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
assocl₊ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ id↔) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ | |
id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , inj₂ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr⋆ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ | |
id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ | |
id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ factor) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , inj₁ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ id↔) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ id↔) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ factor) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ | |
id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocr⋆ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ | |
id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr⋆ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ | |
id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ id↔) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
assocl₊ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₂ (- (tt , 𝔽 , 𝕋)))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇐ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (- (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₂ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₂ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (inj₁ (tt , 𝔽 , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ assocl₊) ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
assocl₊ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₂ (inj₁ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ swap₊) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊗ id↔) ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ | |
(swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝔽))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ | |
(id↔ ⊚ ((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((swap₊ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝔽 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ | |
(id↔ ⊗ (((id↔ ⊗ id↔) ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) | |
⊕ id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ | |
id↔) | |
⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (𝕋 , tt))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (factor ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , inj₁ (tt , 𝕋))) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ (id↔ ⊚ swap⋆))) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ swap⋆)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊗ id↔)) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(factor ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((dist ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((dist ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊚ (swap⋆ ⊕ swap⋆)) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((swap⋆ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ swap⋆) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ id↔) ⊚ | |
(id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
(id↔ ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ | |
((id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) | |
⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ (swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((swap⋆ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ swap⋆) ⊚ factor ⊚ swap⋆)) ⊕ | |
(id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) | |
⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (factor ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ (id↔ ⊚ swap⋆)) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ swap⋆) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (swap₊ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ (id↔ ⊗ id↔))) ⊚ | |
factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) | |
⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊕ id↔) ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) | |
⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((factor ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₂ (tt , 𝔽 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocl⋆ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝕋 , 𝔽 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ (swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝕋 , 𝔽) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ assocr⋆) ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr⋆ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝕋) , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) | |
⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (((id↔ ⊕ id↔) ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ ((id↔ ⊚ factor) ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (factor ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊚ (swap₊ ⊗ id↔))) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (swap₊ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ (id↔ ⊗ id↔)) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊗ id↔) ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((assocl⋆ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ | |
((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((swap⋆ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ | |
id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) | |
⊚ assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ | |
assocr⋆) | |
⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((((id↔ ⊕ id↔) ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((((id↔ ⊚ factor) ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((factor ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((((id↔ ⊚ swap⋆) ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((swap⋆ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((((id↔ ⊗ id↔) ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(((id↔ ⊚ assocr⋆) ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((assocr⋆ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ ((𝔽 , 𝔽) , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊚ | |
(id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor))) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((swap₊ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) | |
⊕ id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝔽 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊗ id↔) ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ | |
id↔) | |
⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ (dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝕋) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊚ (id↔ ⊕ (id↔ ⊗ swap₊))) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝕋)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ (id↔ ⊗ id↔)) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ ((id↔ ⊕ id↔) ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ (id↔ ⊚ factor)) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ factor) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , inj₂ (tt , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊗ id↔) ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(dist ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (𝔽 , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊕ id↔) ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
id↔ ⊚ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(assocr₊ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
(id↔ ⊚ (id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (assocl₊ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ (swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((swap₊ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ ((id↔ ⊕ id↔) ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ (id↔ ⊚ assocr₊)) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ assocr₊) ⊚ assocl₊) ⊚ | |
(id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor | |
⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ | |
((id↔ ⊕ id↔) ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊚ assocl₊) ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ assocl₊ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ id↔ ⊚ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊕ ε) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (id↔ ⊕ id↔) ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ | |
inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ | |
∷ | |
⟪ ⇒ ∣ id↔ ⊚ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) | |
⟧⟫ | |
∷ | |
⟪ ⇒ ∣ (swap₊ ⊚ unite₊l) ⊚ factor ⟦ inj₁ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷ | |
⟪ ⇒ ∣ (id↔ ⊚ unite₊l) ⊚ factor ⟦ inj₂ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷ | |
⟪ ⇒ ∣ unite₊l ⊚ factor ⟦ inj₂ (inj₁ (tt , 𝕋 , 𝔽)) ⟧⟫ ∷ | |
⟪ ⇒ ∣ id↔ ⊚ factor ⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ ∷ | |
⟪ ⇒ ∣ factor ⟦ inj₁ (tt , 𝕋 , 𝔽) ⟧⟫ ∷ ⟪ ⇒ ∣ id↔ ⟦ 𝔽 , 𝕋 , 𝔽 ⟧⟫ ∷ [] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment