Created
February 28, 2016 05:56
-
-
Save Drunkar/c4d3d7328899020f4662 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # coding: utf-8 | |
| import argparse | |
| import numpy as np | |
| from sklearn import svm | |
| from sklearn.multiclass import OneVsRestClassifier | |
| from sklearn.externals import joblib | |
| parser = argparse.ArgumentParser(description="svm") | |
| parser.add_argument("-pretrained_model", default=None) | |
| parser.add_argument("-train", default=None, help="data for train") | |
| parser.add_argument("-test", default="test.csv", help="data for test") | |
| def main(args): | |
| if args.pretrained_model is None: | |
| estimator = svm.SVC(kernel="linear", probability=True, class_weight="auto") | |
| else: | |
| estimator = joblib.load(args.pretrained_model) | |
| classifier = OneVsRestClassifier(estimator) | |
| # train | |
| if args.train is not None: | |
| train_x = [] | |
| train_y = [] | |
| with open(args.train) as fi: | |
| for i, line in enumerate(fi): | |
| if i == 0: continue | |
| row = line.rstrip().split(",") | |
| train_x.append(row[1:]) | |
| train_y.append(row[0]) | |
| classifier.fit(train_x, train_y) | |
| # save | |
| joblib.dump(classifier, "svm.pkl") | |
| if __name__ == '__main__': | |
| args = parser.parse_args() | |
| main(args)P |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment