Created
November 24, 2021 20:31
-
-
Save DuaneNielsen/77a002b577be0432347e0499eb11a177 to your computer and use it in GitHub Desktop.
How to use pytorch lightning with bolts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, EarlyStopping | |
from pytorch_lightning.plugins import DDPPlugin | |
from pl_bolts.datamodules import MNISTDataModule | |
class LightningMNISTClassifier(pl.LightningModule): | |
def __init__(self, lr): | |
super(LightningMNISTClassifier, self).__init__() | |
# mnist images are (1, 28, 28) (channels, width, height) | |
self.layer_1 = torch.nn.Linear(28 * 28, 128) | |
self.layer_2 = torch.nn.Linear(128, 256) | |
self.layer_3 = torch.nn.Linear(256, 10) | |
self.lr_rate = lr | |
def forward(self, x): | |
batch_size, channels, width, height = x.size() | |
# (b, 1, 28, 28) -> (b, 1*28*28) | |
x = x.view(batch_size, -1) | |
# layer 1 (b, 1*28*28) -> (b, 128) | |
x = self.layer_1(x) | |
x = torch.relu(x) | |
# layer 2 (b, 128) -> (b, 256) | |
x = self.layer_2(x) | |
x = torch.relu(x) | |
# layer 3 (b, 256) -> (b, 10) | |
x = self.layer_3(x) | |
# probability distribution over labels | |
x = torch.softmax(x, dim=1) | |
return x | |
def cross_entropy_loss(self, logits, labels): | |
return F.nll_loss(logits, labels) | |
def training_step(self, train_batch, batch_idx): | |
x, y = train_batch | |
logits = self.forward(x) | |
loss = self.cross_entropy_loss(logits, y) | |
logs = {'train_loss': loss.item()} | |
return {'loss': loss, 'log': logs} | |
def validation_step(self, val_batch, batch_idx): | |
x, y = val_batch | |
logits = self.forward(x) | |
loss = self.cross_entropy_loss(logits, y) | |
return {'val_loss': loss} | |
def test_step(self, val_batch, batch_idx): | |
x, y = val_batch | |
logits = self.forward(x) | |
loss = self.cross_entropy_loss(logits, y) | |
return {'test_loss': loss} | |
def validation_epoch_end(self, outputs): | |
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() | |
tensorboard_logs = {'val_loss': avg_loss} | |
return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} | |
def test_epoch_end(self, outputs): | |
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() | |
tensorboard_logs = {'test_loss': avg_loss} | |
return {'avg_test_loss': avg_loss, 'log': tensorboard_logs} | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr_rate) | |
lr_scheduler = {'scheduler': torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95), | |
'name': 'expo_lr'} | |
return [optimizer], [lr_scheduler] | |
if __name__ == '__main__': | |
mnist = MNISTDataModule(num_workers=32) | |
model = LightningMNISTClassifier(lr=1e-3) | |
trainer = pl.Trainer(max_epochs=30, | |
gpus=[0, 1], | |
strategy=DDPPlugin(find_unused_parameters=False), | |
callbacks=[LearningRateMonitor()], | |
enable_checkpointing=True, | |
default_root_dir='.') | |
trainer.fit(model, mnist) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment