Skip to content

Instantly share code, notes, and snippets.

@DustinAlandzes
Created September 9, 2017 00:15
Show Gist options
  • Save DustinAlandzes/a835909ffd15b9927820d175a48dee41 to your computer and use it in GitHub Desktop.
Save DustinAlandzes/a835909ffd15b9927820d175a48dee41 to your computer and use it in GitHub Desktop.
Approximate Entropy with Python/Numpy: https://en.wikipedia.org/wiki/Approximate_entropy
import numpy as np
def ApEn(U, m, r):
def _maxdist(x_i, x_j):
return max([abs(ua - va) for ua, va in zip(x_i, x_j)])
def _phi(m):
x = [[U[j] for j in range(i, i + m - 1 + 1)] for i in range(N - m + 1)]
C = [len([1 for x_j in x if _maxdist(x_i, x_j) <= r]) / (N - m + 1.0) for x_i in x]
return (N - m + 1.0)**(-1) * sum(np.log(C))
N = len(U)
return abs(_phi(m + 1) - _phi(m))
# Usage example
U = np.array([85, 80, 89] * 17)
print ApEn(U, 2, 3)
1.0996541105257052e-05
@DustinAlandzes
Copy link
Author

🔥

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment