As configured in my dotfiles.
start new:
tmux
start new with session name:
-----BEGIN PGP PUBLIC KEY BLOCK----- | |
Version: Mailvelope v1.5.2 | |
Comment: https://www.mailvelope.com | |
xsFNBFgnMEcBEADFhEweFCTt29QQo6wEG6fcw/8w/Q/Mb/C1sjqyvOmktVUL | |
OSRY7/NbSIK9w3Mrsajw++duxBvd5hQ7Qepw0JRXMRFJPAXUYxcAeiOBNClz | |
2YOpCsU0RDaS4RFk03yaBiT49JF+dazs5E2nsJMsIbLWUZVYqrcjaRMJFKIo | |
fNaFNfGIbzf1c+mGKi+utqXVu0X+aKGEyAcWFjhlVxYgasrAyRkYIfiGSs64 | |
OY9EpgReMNrrzOzZJP78W2KL8VPMzgX5ggQD0/Cu8GSMCVOfF40I/2wFLH3z | |
n0nUUkPzQDh+wLW9bySvm8a4w6y/RhP2v7qbvBYgQNARz1HdO9n37yqme4iE |
####################################################### | |
#! /bin/sh | |
# . /etc/rc.d/init.d/functions # uncomment/modify for your killproc | |
case "$1" in | |
start) | |
echo "Starting noip2." | |
/usr/local/bin/noip2 | |
;; | |
stop) | |
echo -n "Shutting down noip2." |
import tensorflow as tf | |
import time | |
# Import MNIST data | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
# Parameters | |
learning_rate = 0.001 | |
training_iters = 200000 |
#! /bin/sh | |
# . /etc/rc.d/init.d/functions # uncomment/modify for your killproc | |
case "$1" in | |
start) | |
echo "Starting noip2." | |
/usr/local/bin/noip2 | |
;; | |
stop) | |
echo -n "Shutting down noip2." | |
killproc -TERM /usr/local/bin/noip2 |
As configured in my dotfiles.
start new:
tmux
start new with session name:
Here you'll learn how to build Tensorflow for the raspberry pi 3 with either the Python API or as a standalone shared library which can be interfaced from the C++ API and eventually as a library which can be used in other languages.
For the C++ library this tutorial will show you how extract tensorflow library and headers to use in any environment you want.
(This tutorial couldn't be possible without the help of the people from the References section)
import gym | |
from gym import wrappers | |
env = gym.make('CartPole-v0') | |
env = wrappers.Monitor(env, '/tmp/cartpole-experiment-1', force=True) | |
for i_episode in range(20): | |
observation = env.reset() | |
for t in range(100): | |
env.render() |
import os | |
import requests | |
from io import BytesIO | |
import Algorithmia | |
from Algorithmia.acl import ReadAcl | |
from torchlite.eval import eval | |
from pathlib import Path | |
from PIL import Image | |
import uuid |