Created
October 31, 2021 06:52
-
-
Save EdisonLeeeee/df5a2427f902312bbd29151f79e728ab to your computer and use it in GitHub Desktop.
Numpy implementation of torch.topk
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from collections import namedtuple | |
topk_namedtuple = namedtuple('topk_namedtuple', ['values', 'indices']) | |
def topk(array: np.ndarray, k: int, largest: bool = True) -> topk_namedtuple: | |
"""Returns the k largest/smallest elements and corresponding indices | |
from an array-like input. | |
Parameters | |
---------- | |
array : np.ndarray or list | |
the array-like input | |
k : int | |
the k in "top-k" | |
largest : bool, optional | |
controls whether to return largest or smallest elements | |
Returns | |
------- | |
namedtuple[values, indices] | |
Returns the :attr:`k` largest/smallest elements and corresponding indices | |
of the given :attr:`array` | |
Example | |
------- | |
>>> array = [5, 3, 7, 2, 1] | |
>>> topk(array, 2) | |
>>> topk_namedtuple(values=array([7, 5]), indices=array([2, 0], dtype=int64)) | |
>>> topk(array, 2, largest=False) | |
>>> topk_namedtuple(values=array([1, 2]), indices=array([4, 3], dtype=int64)) | |
>>> array = [[1, 2], [3, 4], [5, 6]] | |
>>> topk(array, 2) | |
>>> topk_namedtuple(values=array([6, 5]), indices=(array([2, 2], dtype=int64), array([1, 0], dtype=int64))) | |
""" | |
array = np.asarray(array) | |
flat = array.ravel() | |
if largest: | |
indices = np.argpartition(flat, -k)[-k:] | |
argsort = np.argsort(-flat[indices]) | |
else: | |
indices = np.argpartition(flat, k)[:k] | |
argsort = np.argsort(flat[indices]) | |
indices = indices[argsort] | |
values = flat[indices] | |
indices = np.unravel_index(indices, array.shape) | |
if len(indices) == 1: | |
indices, = indices | |
return topk_namedtuple(values=values, indices=indices) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment