Skip to content

Instantly share code, notes, and snippets.

@EduardoRFS
Last active August 20, 2024 04:29
Show Gist options
  • Save EduardoRFS/42a82482f4302ed1e32c24d82b0790a1 to your computer and use it in GitHub Desktop.
Save EduardoRFS/42a82482f4302ed1e32c24d82b0790a1 to your computer and use it in GitHub Desktop.
Set Universe Polymorphism.
Set Definitional UIP.
Inductive eqP (A : Type) (x : A) : A -> SProp :=
| eqP_refl : eqP A x x.
Definition C_Bool : Type := forall A, A -> A -> A.
Definition c_true : C_Bool := fun A x y => x.
Definition c_false : C_Bool := fun A x y => y.
Definition I_Bool (c_b : C_Bool) :=
forall P : C_Bool -> Type, P c_true -> P c_false -> P c_b.
Definition i_true : I_Bool c_true := fun A x y => x.
Definition i_false : I_Bool c_false := fun A x y => y.
Record Bool : Type := {
c_b : C_Bool;
i_b : I_Bool c_b;
w : c_b SProp
(forall H : eqP _ c_b c_true,
eqP _ i_true match H with
| eqP_refl _ _ => i_b
end)
(forall H : eqP _ c_b c_false,
eqP _ i_false match H with
| eqP_refl _ _ => i_b
end)
}.
Definition true : Bool :=
{|
c_b := c_true;
i_b := i_true;
w := fun H => eqP_refl _ _
|}.
Definition false : Bool :=
{|
c_b := c_false;
i_b := i_false;
w := fun H => eqP_refl _ _
|}.
Lemma ind b : forall P : Bool -> Type, P true -> P false -> P b.
intros P x y.
destruct b as [c_b i_b w].
refine (i_b (fun i_c_b =>
forall (eq : eqP _ c_b i_c_b) w,
P {|
c_b := i_c_b;
i_b :=
match eq with
| eqP_refl _ _ => i_b
end;
w := w;
|}
) _ _ (eqP_refl _ _) w).
clear w; intros eq w; unfold true, c_true in *; simpl in *.
destruct (w (eqP_refl _ _)).
exact x.
clear w; intros eq w; unfold false, c_false in *; simpl in *.
destruct (w (eqP_refl _ _)).
exact y.
Defined.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment