Last active
September 16, 2024 13:41
-
-
Save EduardoRFS/45812b664884809b43f50ecb27cac371 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(* follow me on https://twitter.com/TheEduardoRFS *) | |
module Existentials = struct | |
(* packed *) | |
type show = Ex_show : { content : 'a; show : 'a -> string } -> show | |
let value = Ex_show { content = 1; show = Int.to_string } | |
let eval_show ex = | |
let (Ex_show { content; show }) = ex in | |
show content | |
(* well but first-class modules *) | |
module type Show = sig | |
type t | |
val content : t | |
val show : t -> string | |
end | |
let eval_show package = | |
let (module S : Show) = package in | |
S.show S.content | |
let value = | |
(module struct | |
type t = int | |
let content = 1 | |
let show = Int.to_string | |
end : Show) | |
end | |
module Equality = struct | |
type (_, _) eq = Refl : ('x, 'x) eq | |
(* weak, how to derive sym? *) | |
let cast : type a b. (a, b) eq -> a -> b = | |
fun eq x -> | |
let Refl = eq in | |
x | |
(* this is how I got here *) | |
module Subst (M : sig | |
type 'a t | |
end) = | |
struct | |
let subst : type a b. (a, b) eq -> a M.t -> b M.t = | |
fun eq x -> | |
let Refl = eq in | |
x | |
end | |
(* refutation *) | |
let bad : type a. (string, int) eq -> a = fun eq -> match eq with _ -> . | |
(* fancier *) | |
let dependent_types : | |
type a. ((a, int) eq, (a, bool) eq) Either.t -> a -> string = | |
fun tag content -> | |
match tag with | |
| Left Refl -> Int.to_string content | |
| Right Refl -> Bool.to_string content | |
let show_int = dependent_types (Left Refl) | |
let show_string = dependent_types (Right Refl) | |
end | |
module Show = struct | |
(* this is just many equalities *) | |
type _ ty = | |
| T_int : int ty | |
| T_bool : bool ty | |
(* but recursive *) | |
| T_list : 'a ty -> 'a list ty | |
let rec show : type a. a ty -> a -> string = | |
fun tag content -> | |
match tag with | |
| T_int -> Int.to_string content | |
| T_bool -> Bool.to_string content | |
| T_list el_tag -> | |
let serialized_content = List.map (fun el -> show el_tag el) content in | |
Format.sprintf "[%s]" (String.concat ", " serialized_content) | |
let () = print_endline @@ show T_int 1 | |
let () = print_endline @@ show (T_list T_bool) [ true; false ] | |
end | |
module Dependent = struct | |
(* the dream *) | |
type ty = T_int | T_bool | T_list of ty | |
(* sadly this doesn't work *) | |
type 'tag to_type = | |
[%d | |
match tag with | |
| T_int -> int | |
| T_bool -> bool | |
| T_list el -> list (to_type el)] | |
let rec show tag (content : tag to_type) = | |
match tag with | |
| T_int -> Int.to_string content | |
| T_bool -> Bool.to_string content | |
| T_list el_tag -> | |
let serialized_content = List.map (fun el -> show el_tag el) content in | |
Format.sprintf "[%s]" (String.concat ", " serialized_content) | |
let () = print_endline @@ show T_int 1 | |
let () = print_endline @@ show (T_list T_bool) [ true; false ] | |
end | |
module But_some_duplication = struct | |
(* duplicating the type definition also on the type level *) | |
type t_int = | | |
type t_bool = | | |
type _ t_list = | | |
type _ ty = | |
| T_int : t_int ty | |
| T_bool : t_bool ty | |
| T_list : 'el ty -> 'el t_list ty | |
(* expand syntax *) | |
type (_, _) to_type_w = | |
| W_t_int : (t_int, int) to_type_w | |
| W_t_bool : (t_bool, bool) to_type_w | |
| W_t_list : ('tag_el, 'r) to_type_w -> | |
('tag_el t_list, 'r list) to_type_w | |
(* add the original as a package *) | |
type _ to_type = Ex : ('tag, 'r) to_type_w -> 'tag to_type | |
(* term level version *) | |
let rec to_type : type tag. tag ty -> tag to_type = | |
fun tag -> | |
match tag with | |
| T_int -> Ex W_t_int | |
| T_bool -> Ex W_t_bool | |
| T_list el -> | |
let (Ex el_w) = to_type el in | |
Ex (W_t_list el_w) | |
let rec show : | |
type tag content. (tag, content) to_type_w -> | |
tag ty -> content -> string | |
= | |
fun content_type tag content -> | |
match tag with | |
| T_int -> | |
let W_t_int = content_type in | |
Int.to_string content | |
| T_bool -> | |
let W_t_bool = content_type in | |
Bool.to_string content | |
| T_list el_tag -> | |
let (W_t_list el_type) = content_type in | |
let serialized_content = | |
List.map (fun el -> show el_type el_tag el) content | |
in | |
Format.sprintf "[%s]" (String.concat ", " serialized_content) | |
let () = | |
let tag = T_int in | |
let (Ex (type content) (w : (_, content) to_type_w)) = to_type tag in | |
let content : content = | |
let W_t_int = w in | |
1 | |
in | |
print_endline @@ show w tag content | |
let () = | |
let tag = T_list T_bool in | |
let (Ex (type content) (w : (_, content) to_type_w)) = to_type tag in | |
let content : content = | |
let (W_t_list W_t_bool) = w in | |
[ true; false ] | |
in | |
print_endline @@ show w tag content | |
end | |
module Compute_anything = struct | |
type z = | | |
type _ s = | | |
type _ nat = Z : z nat | S : 'a nat -> 'a s nat | |
type (_, _) eq = Refl : ('x, 'x) eq | |
type ('n, 'm, 'r) add_w = | |
| W_n_z : (z, 'm, 'm) add_w | |
| W_n_s : ('n, 'm, 'r) add_w -> ('n s, 'm, 'r s) add_w | |
type ('n, 'm) add = Ex : 'r nat * ('n, 'm, 'r) add_w -> ('n, 'm) add | |
let rec add : type n m. n nat -> m nat -> (n, m) add = | |
fun n m -> | |
match n with | |
| Z -> Ex (m, W_n_z) | |
| S n -> | |
let (Ex (r, w)) = add n m in | |
Ex (S r, W_n_s w) | |
let five = | |
let (Ex (r, w)) = add (S (S Z)) (S (S (S Z))) in | |
let (W_n_s (W_n_s W_n_z)) = w in | |
(r : z s s s s s nat) | |
(* n + z = n *) | |
let rec add_z_is_id : type n r. n nat -> (n, z, r) add_w -> (n, r) eq = | |
fun n w -> | |
match n with | |
| Z -> | |
let W_n_z = w in | |
Refl | |
| S n -> | |
let (W_n_s w) = w in | |
let Refl = add_z_is_id n w in | |
Refl | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment