Skip to content

Instantly share code, notes, and snippets.

@EduardoRFS
Last active December 16, 2024 18:55
Show Gist options
  • Save EduardoRFS/6a0345bf2e04bad294945812f6cedbc1 to your computer and use it in GitHub Desktop.
Save EduardoRFS/6a0345bf2e04bad294945812f6cedbc1 to your computer and use it in GitHub Desktop.
Definition Eq {A} (x y : A) := forall (P : A -> Type), P x -> P y.
Definition refl {A} {x : A} : Eq x x := fun P p_x => p_x.
Definition symm {A} {x y : A} (H : Eq x y) : Eq y x :=
fun P p_y => H (fun z => P z -> P x) (fun x => x) p_y.
Lemma L_must_be_true (
L_is_false : forall {T} {x y : T} (H : Eq x y),
Eq H (fun P => symm H (fun z => P z -> P y) (fun x => x)) -> False
) : False.
exact (L_is_false _ I I refl refl).
Qed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment