Created
January 7, 2019 16:34
-
-
Save Elfsong/493573eccacd194d2e2d6d45bec81f2f to your computer and use it in GitHub Desktop.
Sentence Level scenario detector_CNN #CNN #NLP
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import pandas as pd | |
from bert_serving.client import BertClient | |
from keras.layers import Conv1D | |
from keras.layers import Dense, Activation, Dropout, Flatten, AveragePooling1D | |
from keras.models import Sequential | |
from keras.optimizers import RMSprop | |
from keras.utils import np_utils | |
np.random.seed(1337) | |
bc = BertClient(check_version=False) | |
sentence_path = os.path.join("/Users/elfsong/PycharmProjects/BERT_demo", "sentence_class.xls") | |
data_frame = pd.read_excel(sentence_path, sheet_name='sheet1') | |
train_data_list = list() | |
train_lable_list = list(data_frame["type"]) | |
for sentence in data_frame["sentence"]: | |
print(sentence) | |
result = bc.encode([sentence]) | |
train_data_list += [result[0]] | |
# 数据预处理 | |
X_train = np.array(train_data_list) | |
X_train = np.expand_dims(X_train, 2) | |
y_train = np_utils.to_categorical(train_lable_list, num_classes=11) | |
print(X_train.shape) | |
print(y_train.shape) | |
# 模型构建 | |
model = Sequential([ | |
Conv1D(filters=5, kernel_size=5, strides=1, padding='valid', input_shape=(768, 1), name="Convolution_Layer_1"), | |
AveragePooling1D(pool_size=5, strides=1, padding="valid", name="Pooling_Layer_1"), | |
Conv1D(filters=5, kernel_size=5, strides=1, padding='valid', name="Convolution_Layer_2"), | |
AveragePooling1D(pool_size=5, strides=1, padding="valid", name="Pooling_Layer_2"), | |
Flatten(name="Flatten_Layer"), | |
Dense(256, input_dim=3760, name="Dense_Layer_1"), | |
Activation('relu'), | |
Dropout(0.1), | |
Dense(32, input_dim=256, name="Dense_Layer_2"), | |
Activation('relu'), | |
Dropout(0.1), | |
Dense(11, input_dim=32, name="Dense_Layer_3"), | |
Activation('softmax'), | |
]) | |
# 激活RMS优化器 | |
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) | |
model.compile(optimizer=rmsprop, | |
loss='categorical_crossentropy', | |
metrics=['accuracy']) | |
model.fit(X_train, y_train, epochs=120, batch_size=8) | |
def get_result(result): | |
max_index = np.argmax(result) | |
category_list = ["None", "city", "forest", "default", "flatland", "river", "college", "town", "mountain", "ocean", | |
"plaza"] | |
return category_list[max_index] | |
sentence_vector = bc.encode(["猫爷爷带着[小鸭子]来到了动物游乐场。"]) | |
sentence_vector = np.expand_dims(sentence_vector, 2) | |
result = model.predict(sentence_vector) | |
print(get_result(result)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment