Created
November 23, 2016 17:26
-
-
Save EnsekiTT/6d78c87188a3f4669fa5a997092ad1c8 to your computer and use it in GitHub Desktop.
chainer.trainingのextensions全部試す
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import chainer | |
from chainer import Function, gradient_check, report, training, utils, Variable | |
from chainer import datasets, iterators, optimizers, serializers | |
from chainer import Link, Chain, ChainList | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer.training import extensions | |
class MyModel(Chain): | |
def __init__(self): | |
super(MyModel,self).__init__( | |
l1 = L.Linear(None,100), | |
l2 = L.Linear(None,100), | |
l3 = L.Linear(None,10)) | |
def __call__(self,x): | |
h = F.relu(self.l1(x)) | |
h = F.relu(self.l2(h)) | |
return self.l3(h) | |
def train(): | |
model = L.Classifier(MyModel()) | |
dev = 0 | |
if dev >= 0: | |
chainer.cuda.get_device(dev).use() | |
model.to_gpu() | |
optimizer = chainer.optimizers.Adam() | |
optimizer.setup(model) | |
train, test = chainer.datasets.get_mnist() | |
train_iter = chainer.iterators.SerialIterator(train, 200) | |
test_iter = chainer.iterators.SerialIterator(test, 200,repeat=False, shuffle=False) | |
updater = training.StandardUpdater(train_iter, optimizer, device=dev) | |
trainer = training.Trainer(updater, (100, 'epoch'), out="result") | |
# load trainer snapshot | |
#serializers.load_npz('./result/snapshot_iter_40800', trainer) | |
# dump_graph | |
#trainer.extend(extensions.dump_graph("main/loss")) | |
# Evaluator | |
trainer.extend(extensions.Evaluator(test_iter, model, device=dev)) | |
# ExponentialShift | |
#trainer.extend(extensions.ExponentialShift("alpha", 1.000001)) | |
#trainer.extend(extensions.ExponentialShift("alpha", 1.0001)) | |
# LinearShift | |
#trainer.extend(extensions.LinearShift("alpha", (0.001,0.0001), (20000,30000))) | |
#trainer.extend(extensions.LinearShift("alpha", (0.01,0.001), (20000,30000))) | |
# LogReport | |
trainer.extend(extensions.LogReport()) | |
# snapshot | |
#trainer.extend(extensions.snapshot()) | |
# snapshot_object | |
# trainer.extend(extensions.snapshot_object(optimizer, 'optimizer_snapshot_{.updater.epoch}', trigger=(10,'epoch'))) | |
# PrintReport | |
trainer.extend(extensions.PrintReport( entries=['epoch', 'main/loss', 'main/accuracy', 'elapsed_time' ])) | |
# ProgressBar | |
trainer.extend(extensions.ProgressBar()) | |
print("run") | |
trainer.run() | |
if __name__ == "__main__": | |
train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment