Created
November 14, 2019 00:02
-
-
Save EntilZha/74eec500f56adf774521fc5e3a99706a to your computer and use it in GitHub Desktop.
AllenNLP Reader for Qanta Dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Dict, List, Union | |
import json | |
from overrides import overrides | |
from allennlp.data import DatasetReader, TokenIndexer, Instance | |
from allennlp.data.fields import TextField, LabelField, Field, MetadataField, ArrayField, ListField | |
from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer | |
from allennlp.data.tokenizers import Tokenizer, WordTokenizer, Token | |
from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter, WordSplitter | |
from allennlp.data.tokenizers.word_stemmer import PassThroughWordStemmer | |
from allennlp.data.tokenizers.word_filter import PassThroughWordFilter | |
from allennlp.data.token_indexers.elmo_indexer import ELMoTokenCharactersIndexer | |
QANTA_TRAIN = 'data/qanta.train.2018.04.18.json' | |
QANTA_DEV = 'data/qanta.dev.2018.04.18.json' | |
QANTA_TEST = 'data/qanta.test.2018.04.18.json' | |
@DatasetReader.register('qanta') | |
class QantaReader(DatasetReader): | |
def __init__(self, | |
fold: str, | |
break_questions: bool, | |
lazy: bool = False, | |
tokenizer: Tokenizer = None, | |
token_indexers: Dict[str, TokenIndexer] = None): | |
super().__init__(lazy) | |
# guesstrain, guessdev, guesstest, buzztrain, buzzdev, buzztest | |
self._fold = fold | |
self._break_questions = break_questions | |
self._tokenizer = tokenizer or WordTokenizer(SpacyWordSplitter()) | |
self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} | |
@overrides | |
def _read(self, file_path): | |
with open(file_path) as f: | |
for q in json.load(f)['questions']: | |
if q['page'] is not None and q['fold'] == self._fold: | |
if self._break_questions: | |
for start, end in q['tokenizations']: | |
sentence = q['text'][start:end] | |
instance = self.text_to_instance(sentence, answer=q['page'], qanta_id=q['qanta_id']) | |
if instance is not None: | |
yield instance | |
else: | |
instance = self.text_to_instance(q['text'], answer=q['page'], qanta_id=q['qanta_id']) | |
if instance is not None: | |
yield instance | |
@overrides | |
def text_to_instance(self, | |
text: str, | |
answer: str = None, | |
qanta_id: int = None): | |
fields: Dict[str, Field] = {} | |
tokenized_text = self._tokenizer.tokenize(text) | |
if len(tokenized_text) == 0: | |
return None | |
fields['text'] = TextField(tokenized_text, token_indexers=self._token_indexers) | |
if answer is not None: | |
fields['answer'] = LabelField(answer, label_namespace='answer_labels') | |
fields['metadata'] = MetadataField({'qanta_id': qanta_id}) | |
return Instance(fields) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment