Created
November 3, 2020 17:43
-
-
Save EricSchles/62051fb620cf2467009d58415602ac5b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import pandas as pd | |
class ReluDense(tf.Module): | |
def __init__(self, in_features, out_features, name=None): | |
super().__init__(name=name) | |
self.w = tf.Variable( | |
tf.random.normal([out_features, out_features]), name='w' | |
) | |
self.b = tf.Variable( | |
tf.zeros([out_features]), name='b' | |
) | |
def __call__(self, x): | |
y = tf.matmul(x, self.w) + self.b | |
return tf.nn.relu(y) | |
class Dense(tf.Module): | |
def __init__(self, in_features, out_features, name=None): | |
super().__init__(name=name) | |
self.w = tf.Variable( | |
tf.random.normal([out_features, out_features]), name='w' | |
) | |
self.b = tf.Variable( | |
tf.zeros([out_features]), name='b' | |
) | |
def __call__(self, x): | |
return tf.matmul(x, self.w) + self.b | |
class NeuralNet(Model): | |
def __init__(self, X_in, X_out, optimizer): | |
super(NeuralNet, self).__init__() | |
self.layer_one = ReluDense(X_in, X_out) | |
self.layer_two = Dense(X_in, X_out) | |
self.layer_three = Dense(X_in, X_out) | |
self.out = Dense(X_in, X_out) | |
self.optimizer = optimizer | |
def call(self, x, is_training=False): | |
x = self.layer_one(x) | |
x = self.out(x) | |
return tf.reduce_mean(x, axis=1) | |
def step(self, x, y): | |
with tf.GradientTape() as tape: | |
pred = neural_net(x, is_training=True) | |
loss = loss_func(pred, y) | |
gradients = tape.gradient(loss, neural_net.trainable_variables) | |
self.optimizer.apply_gradients(zip(gradients, neural_net.trainable_variables)) | |
def loss_func(x, y): | |
x = tf.cast(x, tf.float64) | |
y = tf.cast(y, tf.float64) | |
return tf.metrics.MSE(x, y) | |
def run_optimization(x, y): | |
with tf.GradientTape() as tape: | |
pred = neural_net(x, is_training=True) | |
loss = loss_func(pred, y) | |
gradients = tape.gradient(loss, neural_net.trainable_variables) | |
optimizer.apply_gradients(zip(gradients, neural_net.trainable_variables)) | |
if __name__ == '__main__': | |
X = pd.read_csv("X.csv") | |
y = np.load("y.npy") | |
X = X.values | |
X_val = pd.read_csv("X_val.csv") | |
X_val = X_val.values | |
y_val = np.load("y_val.npy") | |
#X = np.random.normal(0, 10, size=1000).reshape(100, 10) | |
#y = np.random.normal(10, 100, size=100) | |
final_losses = [] | |
for _ in range(1000): | |
optimizer = tf.optimizers.Adam(learning_rate=0.5) | |
neural_net = NeuralNet(X.shape[0], X.shape[1], optimizer) | |
for step in range(1000): | |
neural_net.step(X, y) | |
pred = neural_net(X_val, is_training=True) | |
loss = loss_func(pred, y_val) | |
final_losses.append(loss.numpy()) | |
print(min(final_losses)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment