Created
October 26, 2022 14:30
-
-
Save Erlemar/9477c676c6355a54f47adc6026986372 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import altair as alt | |
import numpy as np | |
alt.data_transformers.disable_max_rows() | |
from IPython.display import display, HTML | |
display(HTML("<style>.container { width:100% !important; }</style>")) | |
import matplotlib_inline.backend_inline | |
matplotlib_inline.backend_inline.set_matplotlib_formats('retina') | |
df = pd.read_csv('df.csv') | |
# creating a new set of values for colors. Altair needs data in this format: | |
# a single column with values and another column with a categorical value. | |
df['value_to_select'] = 'porosity' | |
df = df.rename(columns={'porosity': 'value'}) | |
df1 = df.copy() | |
df1['value_to_select'] = 'porosity1' | |
df1['value'] *= np.random.random(df.shape[0]) | |
df = pd.concat([df, df1]) | |
slider = alt.binding_range(min=int(df['k'].min()), max=int(df['k'].max()), step=1) | |
select_layer = alt.selection_single(name="Layer", fields=['k'], | |
bind=slider, init={'k': 11}) | |
input_dropdown = alt.binding_select(options=['porosity', 'porosity1'], name='value_to_select') | |
selection = alt.selection_single(fields=['value_to_select'], bind=input_dropdown) | |
i_slider = alt.binding_range(min=1, max=20, step=1) | |
select_i_range = alt.selection_single(name="i", fields=['i'], | |
bind=i_slider, init={'i': 6}) | |
j_slider = alt.binding_range(min=1, max=20, step=1) | |
select_j_range = alt.selection_single(name="j", fields=['j'], | |
bind=j_slider, init={'j': 6}) | |
centers = [(62, 62), (26, 26), (26, 62), (26, 99), (44, 99), (62, 99)] | |
charts = [] | |
for (i_center, j_center) in centers: | |
chart_ = alt.Chart(df).mark_rect().encode( | |
x='i:O', | |
y='j:O', | |
color=alt.Color('value:Q', scale=alt.Scale(scheme='plasma', domain=(df['value'].min(), df['value'].max()))) | |
).properties( | |
width=200, | |
height=200 | |
).add_selection(select_i_range).transform_filter( | |
f"datum.i >= {i_center} - i.i[0] && datum.i <= {i_center} + i.i[0]" | |
).add_selection(select_j_range).transform_filter( | |
f"datum.j >= {j_center} - j.j[0] && datum.j <= {j_center} + j.j[0]" | |
).add_selection(select_layer).add_selection( | |
selection | |
).transform_filter( | |
selection | |
) | |
charts.append(chart_) | |
big_chart = alt.Chart(df).mark_rect().encode( | |
x='i:O', | |
y='j:O', | |
color=alt.Color('value:Q', scale=alt.Scale(scheme='plasma', domain=(df['value'].min(), df['value'].max()))) | |
).properties( | |
width=400, | |
height=400 | |
).transform_filter( | |
select_layer | |
).add_selection(select_layer).add_selection( | |
selection | |
).transform_filter( | |
selection | |
) | |
big_chart | ((charts[0] | charts[1] | charts[2]) & ((charts[3] | charts[4] | charts[5]))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment