Created
February 26, 2024 17:55
-
-
Save Erol444/c77add48747b05c81f1bf30434cfbdfb to your computer and use it in GitHub Desktop.
DepthAI auto-reconnect
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import cv2 | |
import depthai as dai | |
import numpy as np | |
import time | |
import blobconverter | |
# MobilenetSSD label texts | |
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", | |
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] | |
# Create pipeline | |
pipeline = dai.Pipeline() | |
# Define sources and outputs | |
camRgb = pipeline.create(dai.node.ColorCamera) | |
nn = pipeline.create(dai.node.MobileNetDetectionNetwork) | |
xoutRgb = pipeline.create(dai.node.XLinkOut) | |
nnOut = pipeline.create(dai.node.XLinkOut) | |
nnNetworkOut = pipeline.create(dai.node.XLinkOut) | |
xoutRgb.setStreamName("rgb") | |
nnOut.setStreamName("nn") | |
nnNetworkOut.setStreamName("nnNetwork") | |
# Properties | |
camRgb.setPreviewSize(300, 300) | |
camRgb.setInterleaved(False) | |
camRgb.setFps(40) | |
# Define a neural network that will make predictions based on the source frames | |
nn.setConfidenceThreshold(0.5) | |
nn.setBlobPath(blobconverter.from_zoo(name="mobilenet-ssd", shaves=6)) | |
nn.input.setBlocking(False) | |
nn.passthrough.link(xoutRgb.input) | |
camRgb.preview.link(nn.input) | |
nn.out.link(nnOut.input) | |
nn.outNetwork.link(nnNetworkOut.input) | |
deviceInfo: dai.DeviceInfo = None | |
def connect_and_run(): | |
global deviceInfo | |
with dai.Device(pipeline, deviceInfo) as device: | |
# Output queues will be used to get the rgb frames and nn data from the outputs defined above | |
qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) | |
qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False) | |
qNN = device.getOutputQueue(name="nnNetwork", maxSize=4, blocking=False) | |
frame = None | |
detections = [] | |
startTime = time.monotonic() | |
counter = 0 | |
color2 = (255, 255, 255) | |
# nn data (bounding box locations) are in <0..1> range - they need to be normalized with frame width/height | |
def frameNorm(frame, bbox): | |
normVals = np.full(len(bbox), frame.shape[0]) | |
normVals[::2] = frame.shape[1] | |
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int) | |
def displayFrame(name, frame): | |
color = (255, 0, 0) | |
for detection in detections: | |
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax)) | |
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) | |
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) | |
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2) | |
# Show the frame | |
cv2.imshow(name, frame) | |
printOutputLayersOnce = True | |
while True: | |
inRgb = qRgb.get() | |
inDet = qDet.get() | |
inNN = qNN.get() | |
if inRgb is not None: | |
frame = inRgb.getCvFrame() | |
cv2.putText(frame, "NN fps: {:.2f}".format(counter / (time.monotonic() - startTime)), | |
(2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color2) | |
if inDet is not None: | |
detections = inDet.detections | |
counter += 1 | |
if printOutputLayersOnce and inNN is not None: | |
toPrint = 'Output layer names:' | |
for ten in inNN.getAllLayerNames(): | |
toPrint = f'{toPrint} {ten},' | |
print(toPrint) | |
printOutputLayersOnce = False; | |
# If the frame is available, draw bounding boxes on it and show the frame | |
if frame is not None: | |
displayFrame("rgb", frame) | |
if cv2.waitKey(1) == ord('q'): | |
break | |
# Adding exception handling to retry the connection if it fails due to a device disconnection | |
import time | |
while True: | |
try: | |
connect_and_run() | |
except RuntimeError as e: | |
print(f"Runtime error: {e}. Retrying in 2 seconds...") | |
except Exception as e: | |
print(f"Error: {e}. Retrying in 2 seconds...") | |
time.sleep(2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment