Skip to content

Instantly share code, notes, and snippets.

@Everfighting
Created January 10, 2020 10:21
Show Gist options
  • Save Everfighting/673b56521531321b7715e6ecc8657b9a to your computer and use it in GitHub Desktop.
Save Everfighting/673b56521531321b7715e6ecc8657b9a to your computer and use it in GitHub Desktop.
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
# 加载数据集
iris = load_iris()
# 数据特征:150行, 4列
features = iris['data']
# 对应的鸢尾花种类: 150个,三种鸢尾花分别用 0,1,2 表示
target = iris['target']
# 自定义4个特征的名称
feature_names = iris.feature_names
feature_names = ['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度']
# 自定义三种鸢尾花的名称
class_names = iris.target_names
class_names = ['山鸢尾花', '变色鸢尾花', '维吉尼亚鸢尾花']
# 把样本分成训练集和测试集两部分, 两者比例为: 7:3
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.3, random_state=42)
# 训练
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 预测
output = lr.predict(X_test)
# 计算准确率
acc = np.mean(output == y_test)*100
print("The accuracy of the logistic regression classifier is: \t", acc, "%")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment