Skip to content

Instantly share code, notes, and snippets.

@FadedWeiss
Created November 1, 2022 01:46
Show Gist options
  • Select an option

  • Save FadedWeiss/c8776c6cfae304be81bdd99e0a7cc86b to your computer and use it in GitHub Desktop.

Select an option

Save FadedWeiss/c8776c6cfae304be81bdd99e0a7cc86b to your computer and use it in GitHub Desktop.
Half\Ico
<script>
let logo = ``;
let noise = `
// Simplex 4D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}
vec4 grad4(float j, vec4 ip){
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
float snoise(vec4 v){
const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4
0.309016994374947451); // (sqrt(5) - 1)/4 F4
// First corner
vec4 i = floor(v + dot(v, C.yyyy) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C
vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;
// Permutations
i = mod(i, 289.0);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
`;
</script>
import * as THREE from "https://cdn.skypack.dev/[email protected]";
import { OrbitControls } from "https://cdn.skypack.dev/[email protected]/examples/jsm/controls/OrbitControls";
import { RoomEnvironment } from "https://cdn.skypack.dev/[email protected]/examples/jsm/environments/RoomEnvironment";
import * as BufferGeometryUtils from "https://cdn.skypack.dev/[email protected]/examples/jsm/utils/BufferGeometryUtils";
console.clear();
let scene = new THREE.Scene();
let camera = new THREE.PerspectiveCamera(
60,
innerWidth / innerHeight,
0.1,
100
);
camera.position.set(0, 0, 12);
let renderer = new THREE.WebGLRenderer({ antialias: true, alpha: true });
renderer.setSize(innerWidth, innerHeight);
document.body.appendChild(renderer.domElement);
window.addEventListener("resize", (event) => {
camera.aspect = innerWidth / innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(innerWidth, innerHeight);
});
const pmremGenerator = new THREE.PMREMGenerator(renderer);
let env = pmremGenerator.fromScene(new RoomEnvironment(), 0.04).texture;
let controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
//controls.target.set(0, 1.25, 0);
//controls.update();
let light = new THREE.DirectionalLight(0xffffff, 0.1);
light.position.setScalar(1);
scene.add(light, new THREE.AmbientLight(0xffffff, 0.9));
let gu = {
time: { value: 0 }
};
let baseG = new THREE.IcosahedronGeometry(5, 11);
baseG.rotateZ(THREE.MathUtils.degToRad(31.72));
let restFaces = [];
let lidFaces = [];
let vtx = [new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3()];
let pos = baseG.attributes.position;
let faces = pos.count / 3;
let tlrc = 0.01;
let canMove = [];
for (let i = 0; i < faces; i++) {
vtx[0].fromBufferAttribute(pos, i * 3 + 0);
vtx[1].fromBufferAttribute(pos, i * 3 + 1);
vtx[2].fromBufferAttribute(pos, i * 3 + 2);
if (vtx[0].y > -tlrc && vtx[1].y > -tlrc && vtx[2].y > -tlrc) {
vtx.forEach((v) => {
restFaces.push(v.clone());
canMove.push(1);
});
} else {
// lid
let cntr = [];
vtx.forEach(v => {
if (v.y < -tlrc) cntr.push(v);
})
if (cntr.length == 1){
cntr[0].setScalar(0);
vtx.forEach(v => {
restFaces.push(v.clone());
canMove.push(v.length() == 0 ? 0 : 1)
})
}
}
}
let b3 = new THREE.Box3().setFromPoints(restFaces);
let translateY = -b3.min.y;
let g = new THREE.BufferGeometry()
.setFromPoints(restFaces)
.translate(0, translateY, 0);
//g.rotateZ(Math.PI);
g.computeVertexNormals();
setAttributes(g);
console.log(g.attributes.position.count);
let m = new THREE.MeshStandardMaterial({
//wireframe: true,
roughness: 0.3,
metalness: 0.9,
envMap: env,
onBeforeCompile: (shader) => {
shader.uniforms.time = gu.time;
shader.uniforms.colorIn = { value: new THREE.Color("#91a8d0") };
shader.uniforms.colorOut = { value: new THREE.Color("#f7cac9") };
shader.uniforms.logo = {value: new THREE.TextureLoader().load(logo, tex =>{
//console.log(tex);
})};
shader.vertexShader = `
uniform float time;
attribute vec3 position2;
attribute vec3 position3;
attribute float canMove;
attribute float canMove2;
attribute float canMove3;
varying vec3 vPos;
varying vec3 vN;
${noise}
float noisePos(vec3 pos){
float t = time * 0.125;
vec3 pn = normalize(pos);
float n = snoise(vec4(pn * 1.5, t));
n = n * 0.5 + 0.5;
return 2. + n * 4.;
}
${shader.vertexShader}
`
.replace(
`#include <beginnormal_vertex>`,
`#include <beginnormal_vertex>
vec3 na = normalize(position) * canMove;
vec3 nb = normalize(position2) * canMove2;
vec3 nc = normalize(position3) * canMove3;
vec3 a = length(position) < 0.001 ? position : na * noisePos(vec3(modelMatrix * vec4(position, 1.)));
if(normal.y >= 0.){
vec3 b = nb * noisePos(vec3(modelMatrix * vec4(position2, 1.)));
vec3 c = nc * noisePos(vec3(modelMatrix * vec4(position3, 1.)));
vec3 ab = normalize(a - b);
vec3 cb = normalize(c - b);
objectNormal = normalize(cross(cb, ab));
vN = objectNormal;
}
`
)
.replace(
`#include <begin_vertex>`,
`#include <begin_vertex>
transformed = a;
vPos = a;
`
);
//console.log(shader.vertexShader);
shader.fragmentShader = `
uniform vec3 colorIn;
uniform vec3 colorOut;
uniform sampler2D logo;
varying vec3 vPos;
varying vec3 vN;
${shader.fragmentShader}
`
.replace(
`#include <color_fragment>`,
`#include <color_fragment>
vec2 logoUV = (vPos.xz + vec2(1, 0.5)) * vec2(1., 2.) / 3.;
float valRoughness = texture(logo, logoUV).r;
float texRoughness = 1. - valRoughness;
float limRoughness = step(0.01, vPos.y);
diffuseColor.rgb = mix(colorIn, colorOut, clamp(length(vPos) / 7., 0., 1.));
diffuseColor.rgb = mix(diffuseColor.rgb, vec3(0.5, 1, 1), valRoughness * (1. - limRoughness));
`
).replace(
`#include <roughnessmap_fragment>`,
`#include <roughnessmap_fragment>
roughnessFactor = mix(roughnessFactor * texRoughness, roughnessFactor, limRoughness);
`
);
//console.log(shader.fragmentShader);
} /**/
});
let o = new THREE.Mesh(g, m);
//o.rotation.set(-Math.PI * 0.5, 0, 0)
scene.add(o);
let plane = new THREE.Plane();
let clock = new THREE.Clock();
renderer.setAnimationLoop(() => {
controls.update();
let t = clock.getElapsedTime();
t *= 0.1;
gu.time.value = t;
let rt = t * 2;
o.rotation.set(rt * 0.27, rt * 0.31, rt * 0.21);
renderer.render(scene, camera);
});
function setAttributes(g) {
let pos = g.attributes.position;
let faces = pos.count / 3;
let faceVerts = [
new THREE.Vector3(),
new THREE.Vector3(),
new THREE.Vector3()
];
let canMoves = [0, 0, 0];
let position2 = [];
let position3 = [];
let canMove2 = [];
let canMove3 = [];
for (let i = 0; i < faces; i++) {
faceVerts[0].fromBufferAttribute(pos, i * 3 + 0);
faceVerts[1].fromBufferAttribute(pos, i * 3 + 1);
faceVerts[2].fromBufferAttribute(pos, i * 3 + 2);
canMoves[0] = canMove[i * 3 + 0];
canMoves[1] = canMove[i * 3 + 1];
canMoves[2] = canMove[i * 3 + 2];
for (let v = 0; v < 3; v++) {
let v2 = faceVerts[(v + 1) % 3];
let v3 = faceVerts[(v + 2) % 3];
position2.push(v2.x, v2.y, v2.z);
position3.push(v3.x, v3.y, v3.z);
canMove2.push(canMoves[(v + 1) % 3]);
canMove3.push(canMoves[(v + 2) % 3]);
}
}
g.setAttribute("position2", new THREE.Float32BufferAttribute(position2, 3));
g.setAttribute("position3", new THREE.Float32BufferAttribute(position3, 3));
const vectors = [
new THREE.Vector3(1, 0, 0),
new THREE.Vector3(0, 1, 0),
new THREE.Vector3(0, 0, 1)
];
const centers = new Float32Array(pos.count * 3);
for (let i = 0, l = pos.count; i < l; i++) {
vectors[i % 3].toArray(centers, i * 3);
}
g.setAttribute("center", new THREE.BufferAttribute(centers, 3));
g.setAttribute("canMove", new THREE.Float32BufferAttribute(canMove, 1));
g.setAttribute("canMove2", new THREE.Float32BufferAttribute(canMove2, 1));
g.setAttribute("canMove3", new THREE.Float32BufferAttribute(canMove3, 1));
}
body{
overflow: hidden;
margin: 0;
/*https://www.svgbackgrounds.com/category/pattern*/
background-color: #DBC1CB;
background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='540' height='450' viewBox='0 0 1080 900'%3E%3Cg fill-opacity='0.025'%3E%3Cpolygon fill='%23444' points='90 150 0 300 180 300'/%3E%3Cpolygon points='90 150 180 0 0 0'/%3E%3Cpolygon fill='%23AAA' points='270 150 360 0 180 0'/%3E%3Cpolygon fill='%23DDD' points='450 150 360 300 540 300'/%3E%3Cpolygon fill='%23999' points='450 150 540 0 360 0'/%3E%3Cpolygon points='630 150 540 300 720 300'/%3E%3Cpolygon fill='%23DDD' points='630 150 720 0 540 0'/%3E%3Cpolygon fill='%23444' points='810 150 720 300 900 300'/%3E%3Cpolygon fill='%23FFF' points='810 150 900 0 720 0'/%3E%3Cpolygon fill='%23DDD' points='990 150 900 300 1080 300'/%3E%3Cpolygon fill='%23444' points='990 150 1080 0 900 0'/%3E%3Cpolygon fill='%23DDD' points='90 450 0 600 180 600'/%3E%3Cpolygon points='90 450 180 300 0 300'/%3E%3Cpolygon fill='%23666' points='270 450 180 600 360 600'/%3E%3Cpolygon fill='%23AAA' points='270 450 360 300 180 300'/%3E%3Cpolygon fill='%23DDD' points='450 450 360 600 540 600'/%3E%3Cpolygon fill='%23999' points='450 450 540 300 360 300'/%3E%3Cpolygon fill='%23999' points='630 450 540 600 720 600'/%3E%3Cpolygon fill='%23FFF' points='630 450 720 300 540 300'/%3E%3Cpolygon points='810 450 720 600 900 600'/%3E%3Cpolygon fill='%23DDD' points='810 450 900 300 720 300'/%3E%3Cpolygon fill='%23AAA' points='990 450 900 600 1080 600'/%3E%3Cpolygon fill='%23444' points='990 450 1080 300 900 300'/%3E%3Cpolygon fill='%23222' points='90 750 0 900 180 900'/%3E%3Cpolygon points='270 750 180 900 360 900'/%3E%3Cpolygon fill='%23DDD' points='270 750 360 600 180 600'/%3E%3Cpolygon points='450 750 540 600 360 600'/%3E%3Cpolygon points='630 750 540 900 720 900'/%3E%3Cpolygon fill='%23444' points='630 750 720 600 540 600'/%3E%3Cpolygon fill='%23AAA' points='810 750 720 900 900 900'/%3E%3Cpolygon fill='%23666' points='810 750 900 600 720 600'/%3E%3Cpolygon fill='%23999' points='990 750 900 900 1080 900'/%3E%3Cpolygon fill='%23999' points='180 0 90 150 270 150'/%3E%3Cpolygon fill='%23444' points='360 0 270 150 450 150'/%3E%3Cpolygon fill='%23FFF' points='540 0 450 150 630 150'/%3E%3Cpolygon points='900 0 810 150 990 150'/%3E%3Cpolygon fill='%23222' points='0 300 -90 450 90 450'/%3E%3Cpolygon fill='%23FFF' points='0 300 90 150 -90 150'/%3E%3Cpolygon fill='%23FFF' points='180 300 90 450 270 450'/%3E%3Cpolygon fill='%23666' points='180 300 270 150 90 150'/%3E%3Cpolygon fill='%23222' points='360 300 270 450 450 450'/%3E%3Cpolygon fill='%23FFF' points='360 300 450 150 270 150'/%3E%3Cpolygon fill='%23444' points='540 300 450 450 630 450'/%3E%3Cpolygon fill='%23222' points='540 300 630 150 450 150'/%3E%3Cpolygon fill='%23AAA' points='720 300 630 450 810 450'/%3E%3Cpolygon fill='%23666' points='720 300 810 150 630 150'/%3E%3Cpolygon fill='%23FFF' points='900 300 810 450 990 450'/%3E%3Cpolygon fill='%23999' points='900 300 990 150 810 150'/%3E%3Cpolygon points='0 600 -90 750 90 750'/%3E%3Cpolygon fill='%23666' points='0 600 90 450 -90 450'/%3E%3Cpolygon fill='%23AAA' points='180 600 90 750 270 750'/%3E%3Cpolygon fill='%23444' points='180 600 270 450 90 450'/%3E%3Cpolygon fill='%23444' points='360 600 270 750 450 750'/%3E%3Cpolygon fill='%23999' points='360 600 450 450 270 450'/%3E%3Cpolygon fill='%23666' points='540 600 630 450 450 450'/%3E%3Cpolygon fill='%23222' points='720 600 630 750 810 750'/%3E%3Cpolygon fill='%23FFF' points='900 600 810 750 990 750'/%3E%3Cpolygon fill='%23222' points='900 600 990 450 810 450'/%3E%3Cpolygon fill='%23DDD' points='0 900 90 750 -90 750'/%3E%3Cpolygon fill='%23444' points='180 900 270 750 90 750'/%3E%3Cpolygon fill='%23FFF' points='360 900 450 750 270 750'/%3E%3Cpolygon fill='%23AAA' points='540 900 630 750 450 750'/%3E%3Cpolygon fill='%23FFF' points='720 900 810 750 630 750'/%3E%3Cpolygon fill='%23222' points='900 900 990 750 810 750'/%3E%3Cpolygon fill='%23222' points='1080 300 990 450 1170 450'/%3E%3Cpolygon fill='%23FFF' points='1080 300 1170 150 990 150'/%3E%3Cpolygon points='1080 600 990 750 1170 750'/%3E%3Cpolygon fill='%23666' points='1080 600 1170 450 990 450'/%3E%3Cpolygon fill='%23DDD' points='1080 900 1170 750 990 750'/%3E%3C/g%3E%3C/svg%3E");
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment