server.py
contains the API code for the Flask server (back-end)main.py
contains the streamlit code (front-end)
pip install plotly streamlit pandas requests flask
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import random | |
def itershuffle(iterable,bufsize=1000): | |
"""Shuffle an iterator. This works by holding `bufsize` items back | |
and yielding them sometime later. This is NOT 100% random, proved or anything.""" | |
iterable = iter(iterable) | |
buf = [] |
// ==UserScript== | |
// @name View Image | |
// @namespace https://github.com/bijij/ViewImage | |
// @version 4.1.1 | |
// @description This userscript re-implements the "View Image" and "Search by image" buttons into google images. | |
// @author Joshua B | |
// @run-at document-end | |
// @include http*://*.google.tld/search*tbm=isch* | |
// @include http*://*.google.tld/imgres* | |
// @updateURL https://gist.githubusercontent.com/bijij/58cc8cfc859331e4cf80210528a7b255/raw/viewimage.user.js |
#!/bin/bash | |
### steps #### | |
# Verify the system has a cuda-capable gpu | |
# Download and install the nvidia cuda toolkit and cudnn | |
# Setup environmental variables | |
# Verify the installation | |
### | |
### to verify your gpu is cuda enable check |
To run access a remote jupyter notebook, you will need to do the following:
~/.ssh/config
):Host FLIP # access point server
HostName access.engr.oregonstate.edu
User ONIDusername
Host DGX # target server
HostName submit-b.hpc.engr.oregonstate.edu
User ONIDusername
#!/bin/bash | |
# https://gist.github.com/FarisHijazi/4ba8d9768eddc6f218ecd21824c24909 | |
#TODO: fix directory naming, name it something related to the file | |
# argparsing from: https://stackoverflow.com/a/39376824/7771202 | |
# usage function | |
function usage() | |
{ |
""" | |
VoiceFixer | |
$ python voicefixer_cli.py -i ~/Downloads/download.mp3 | |
# for running on multiple files | |
$ find path/to/folder -name "*.wav" -not -name "*denoised*" |xargs -P 20 -I{} sh -c 'python voicefixer_cli.py -i {}' | |
""" | |
""" |
These instructions are based on DreamBooth usage with the https://github.com/ShivamShrirao/diffusers repo.
Below are 2 files. "convertToCkpt.py" and "toCkpt.sh". Create those files inside the examples/dreambooth
folder with the code provided.
import copy | |
import torch | |
import torch.nn.functional as F | |
import torch.backends.cuda as cuda | |
from torch.utils.data import DataLoader, IterableDataset | |
import wandb | |
from tqdm import tqdm | |
import bitsandbytes as bnb |