Created
July 23, 2018 22:17
-
-
Save FavioVazquez/18cfdd5fde12b23cadc669167c672e0f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import random | |
import math | |
import numpy as np | |
import skimage.io | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import coco | |
import utils | |
import model as modellib | |
import visualize | |
import torch | |
# Root directory of the project | |
ROOT_DIR = os.getcwd() | |
# Directory to save logs and trained model | |
MODEL_DIR = os.path.join(ROOT_DIR, "logs") | |
# Path to trained weights file | |
# Download this file and place in the root of your | |
# project (See README file for details) | |
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.pth") | |
# Directory of images to run detection on | |
IMAGE_DIR = os.path.join(ROOT_DIR, "images") | |
class InferenceConfig(coco.CocoConfig): | |
# Set batch size to 1 since we'll be running inference on | |
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU | |
# GPU_COUNT = 0 for CPU | |
GPU_COUNT = 1 | |
IMAGES_PER_GPU = 1 | |
config = InferenceConfig() | |
config.display() | |
# Create model object. | |
model = modellib.MaskRCNN(model_dir=MODEL_DIR, config=config) | |
if config.GPU_COUNT: | |
model = model.cuda() | |
# Load weights trained on MS-COCO | |
model.load_state_dict(torch.load(COCO_MODEL_PATH)) | |
# COCO Class names | |
# Index of the class in the list is its ID. For example, to get ID of | |
# the teddy bear class, use: class_names.index('teddy bear') | |
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', | |
'bus', 'train', 'truck', 'boat', 'traffic light', | |
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', | |
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', | |
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | |
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | |
'kite', 'baseball bat', 'baseball glove', 'skateboard', | |
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', | |
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | |
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', | |
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | |
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', | |
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', | |
'teddy bear', 'hair drier', 'toothbrush'] | |
# Load a random image from the images folder | |
file_names = next(os.walk(IMAGE_DIR))[2] | |
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names))) | |
# Run detection | |
results = model.detect([image]) | |
# Visualize results | |
r = results[0] | |
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], | |
class_names, r['scores']) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment