Created
February 26, 2019 18:33
-
-
Save FavioVazquez/74de3dbb21a29a2386f4591d3f33f476 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
__weights_dict = dict() | |
def load_weights(weight_file): | |
if weight_file == None: | |
return | |
try: | |
weights_dict = np.load(weight_file).item() | |
except: | |
weights_dict = np.load(weight_file, encoding='bytes').item() | |
return weights_dict | |
class KitModel(nn.Module): | |
def __init__(self, weight_file): | |
super(KitModel, self).__init__() | |
global __weights_dict | |
__weights_dict = load_weights(weight_file) | |
self.convolution2d_1 = self.__conv(2, name='convolution2d_1', in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True) | |
self.convolution2d_2 = self.__conv(2, name='convolution2d_2', in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True) | |
self.convolution2d_3 = self.__conv(2, name='convolution2d_3', in_channels=15, out_channels=64, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True) | |
self.convolution2d_4 = self.__conv(2, name='convolution2d_4', in_channels=15, out_channels=64, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True) | |
self.dense_1 = self.__dense(name = 'dense_1', in_features = 2304, out_features = 512, bias = True) | |
self.dense_2 = self.__dense(name = 'dense_2', in_features = 512, out_features = 10, bias = True) | |
def forward(self, x): | |
convolution2d_1_pad = F.pad(x, (1, 1, 1, 1)) | |
convolution2d_1 = self.convolution2d_1(convolution2d_1_pad) | |
activation_1 = F.relu(convolution2d_1) | |
convolution2d_2 = self.convolution2d_2(activation_1) | |
activation_2 = F.relu(convolution2d_2) | |
maxpooling2d_1 = F.max_pool2d(activation_2, kernel_size=(2, 2), stride=(2, 2), padding=0, ceil_mode=False) | |
dropout_1 = F.dropout(input = maxpooling2d_1, p = 0.25, training = self.training, inplace = True) | |
convolution2d_3_pad = F.pad(dropout_1, (1, 1, 1, 1)) | |
convolution2d_3 = self.convolution2d_3(convolution2d_3_pad) | |
activation_3 = F.relu(convolution2d_3) | |
convolution2d_4 = self.convolution2d_4(activation_3) | |
activation_4 = F.relu(convolution2d_4) | |
maxpooling2d_2 = F.max_pool2d(activation_4, kernel_size=(2, 2), stride=(2, 2), padding=0, ceil_mode=False) | |
dropout_2 = F.dropout(input = maxpooling2d_2, p = 0.25, training = self.training, inplace = True) | |
flatten_1 = dropout_2.view(dropout_2.size(0), -1) | |
dense_1 = self.dense_1(flatten_1) | |
activation_5 = F.relu(dense_1) | |
dropout_3 = F.dropout(input = activation_5, p = 0.5, training = self.training, inplace = True) | |
dense_2 = self.dense_2(dropout_3) | |
activation_6 = F.softmax(dense_2) | |
return activation_6 | |
@staticmethod | |
def __conv(dim, name, **kwargs): | |
if dim == 1: layer = nn.Conv1d(**kwargs) | |
elif dim == 2: layer = nn.Conv2d(**kwargs) | |
elif dim == 3: layer = nn.Conv3d(**kwargs) | |
else: raise NotImplementedError() | |
layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['weights'])) | |
if 'bias' in __weights_dict[name]: | |
layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias'])) | |
return layer | |
@staticmethod | |
def __dense(name, **kwargs): | |
layer = nn.Linear(**kwargs) | |
layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['weights'])) | |
if 'bias' in __weights_dict[name]: | |
layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias'])) | |
return layer |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment