Skip to content

Instantly share code, notes, and snippets.

@FavioVazquez
Created August 14, 2018 23:08
Show Gist options
  • Save FavioVazquez/a040c729d7fc4e3b950abeae59f6733f to your computer and use it in GitHub Desktop.
Save FavioVazquez/a040c729d7fc4e3b950abeae59f6733f to your computer and use it in GitHub Desktop.
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment