Created
August 14, 2018 23:08
-
-
Save FavioVazquez/a040c729d7fc4e3b950abeae59f6733f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.datasets import make_classification | |
from torch import nn | |
import torch.nn.functional as F | |
from skorch import NeuralNetClassifier | |
X, y = make_classification(1000, 20, n_informative=10, random_state=0) | |
X = X.astype(np.float32) | |
y = y.astype(np.int64) | |
class MyModule(nn.Module): | |
def __init__(self, num_units=10, nonlin=F.relu): | |
super(MyModule, self).__init__() | |
self.dense0 = nn.Linear(20, num_units) | |
self.nonlin = nonlin | |
self.dropout = nn.Dropout(0.5) | |
self.dense1 = nn.Linear(num_units, 10) | |
self.output = nn.Linear(10, 2) | |
def forward(self, X, **kwargs): | |
X = self.nonlin(self.dense0(X)) | |
X = self.dropout(X) | |
X = F.relu(self.dense1(X)) | |
X = F.softmax(self.output(X), dim=-1) | |
return X | |
net = NeuralNetClassifier( | |
MyModule, | |
max_epochs=10, | |
lr=0.1, | |
) | |
net.fit(X, y) | |
y_proba = net.predict_proba(X) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment