Last active
March 8, 2024 12:45
-
-
Save FdelMazo/89c903846907c4080826b8efe9fe2f13 to your computer and use it in GitHub Desktop.
6109-Proba: Ejercicios Obligatorios de Estadística, en Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
41.3431 | |
33.5864 | |
155.0215 | |
23.0177 | |
6.4319 | |
121.5841 | |
45.4330 | |
69.9679 | |
0.8175 | |
27.2983 | |
75.4275 | |
111.1169 | |
33.3828 | |
10.3938 | |
9.7858 | |
10.0267 | |
87.5067 | |
33.4421 | |
7.3478 | |
116.1580 | |
8.5291 | |
5.8085 | |
83.8134 | |
141.0322 | |
41.0352 | |
9.9160 | |
41.5973 | |
48.5345 | |
37.8218 | |
114.1760 | |
111.2537 | |
7.6294 | |
27.8256 | |
72.9788 | |
7.9890 | |
156.4985 | |
42.9783 | |
17.8992 | |
59.4967 | |
50.2285 | |
35.2326 | |
6.1482 | |
13.7811 | |
146.7584 | |
70.2524 | |
53.3084 | |
7.9972 | |
47.7177 | |
78.5195 | |
28.3108 | |
40.4366 | |
5.8837 | |
3.7136 | |
11.0567 | |
18.9215 | |
16.3219 | |
5.8126 | |
150.1327 | |
60.0000 | |
299.2559 | |
10.3745 | |
37.3112 | |
55.2573 | |
81.6417 | |
34.4192 | |
68.1809 | |
147.5544 | |
135.5997 | |
147.5797 | |
49.0625 | |
115.0861 | |
44.7781 | |
5.8597 | |
57.1713 | |
116.5329 | |
31.0024 | |
7.3422 | |
57.9646 | |
174.4583 | |
107.2246 | |
141.3088 | |
16.5217 | |
43.1261 | |
22.1702 | |
19.6764 | |
30.7857 | |
25.5261 | |
7.1708 | |
22.6577 | |
7.3182 | |
41.8176 | |
107.6138 | |
147.7450 | |
18.5093 | |
64.7735 | |
21.9308 | |
23.4886 | |
34.8096 | |
18.4428 | |
37.5965 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[12pt]{article} | |
\usepackage{tikz} | |
\usepackage{xcolor} | |
\usepackage{pdfpages} | |
\pagestyle{empty} | |
\usepackage[a4paper, margin=0.2in]{geometry} | |
\begin{document} | |
\includepdf[pagecommand={ | |
\begin{tikzpicture}[remember picture, overlay] | |
\node at (15.65,-6.5) {Vera (Curso 21)}; | |
\node at (15.3, -7.4) {del Mazo, Federico}; | |
\node at (16.4,-8.2) {100029}; | |
\end{tikzpicture}}]{enunciado} | |
\includepdf[pages={2}]{enunciado} | |
% jupyter nbconvert --to pdf --execute notebook.ipynb | |
\includepdf[pages=-]{notebook} | |
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "d0a6fce9", | |
"metadata": {}, | |
"source": [ | |
"# Estimadores de Máxima Verosimilitud" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "56ec373f", | |
"metadata": {}, | |
"source": [ | |
"Queremos hallar el EMV de $\\theta = (\\mu, \\sigma^2)$ de la muestra $X_1,...,X_n \\sim N(\\mu,\\sigma^2)$\n", | |
"\n", | |
"Entonces, con muchísima ayuda de Wolfram, y justificando el método de igualar la derivada a 0 porque se que la distribución Normal es parte de la familia regular...\n", | |
"\n", | |
"$$ f_X(x_i) = \\frac{1}{\\sigma^2\\sqrt{2\\pi}} * e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}} $$\n", | |
"\n", | |
"$$ f_X(\\underline{x}) = \\prod_{i=1}^{n} f_X(x_i) $$\n", | |
"\n", | |
"---\n", | |
"\n", | |
"$$ L(\\theta) = \\frac{1}{\\left(\\sqrt{2\\pi}\\right)^{n}} \\frac{1}{\\left({\\sigma^2}\\right)^n} * e^{\\frac{1}{\\sigma^2} * \\sum_{i=1}^{n} (x_i - \\mu)^2}$$ \n", | |
"\n", | |
"$$ \\ln(L) = -n \\ln\\left(\\sqrt{2\\pi}\\right) - n \\ln\\left(\\sigma^2\\right) - \\frac{1}{\\sigma^2} \\sum_{i=1}^{n} (x_i - \\mu)^2$$ \n", | |
"\n", | |
"---\n", | |
"\n", | |
"$$ \\frac{\\partial\\ln(L)}{\\partial{\\mu}} = \\frac{1}{\\sigma^2} \\sum_{i=1}^{n} (x_i-\\mu) = 0 \\Rightarrow \\hat\\mu = \\frac{1}{n} \\sum_{i=1}^{n} x_i$$\n", | |
"\n", | |
"$$ \\frac{\\partial\\ln(L)}{\\partial{\\sigma^2}} = - \\frac{n}{2\\sigma^2} + \\frac{\\sum_{i=1}^{n}(X_i - \\mu)^2}{2\\sigma^2} \\Rightarrow \\hat{\\sigma}^2 = \\frac{1}{n} \\sum_{i=1}^{n} (X_i - \\mu)^2$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "5c40321c", | |
"metadata": {}, | |
"source": [ | |
"Podemos ver que, de la familia de estimadores de varianza dada en el enunciado, en el EMV tenemos que $a_n$ es $\\frac{1}{n}$." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "8e9241e8", | |
"metadata": {}, | |
"source": [ | |
"$$ $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "f7437e95", | |
"metadata": {}, | |
"source": [ | |
"Ahora, buscamos calcular el sesgo y la varianza de $T^2$\n", | |
"\n", | |
"$$ T^2 = \\theta = a_n \\sum_{i=1}^{n} (X_i - \\bar{X})^2$$\n", | |
"\n", | |
"$$ Sesgo = B_{\\theta}(\\hat{\\theta}) = E_{\\theta}[\\hat{\\theta}] - \\theta $$\n", | |
"\n", | |
"\n", | |
"\n", | |
"El teorema de Cochran nos dice que, con $X\\sim N(0,1)$, tenemos $\\sum_{i=1}^{n} (X_i - \\bar{X})^2 \\sim \\chi_{n-1}^2$. \n", | |
"\n", | |
"Nosotros tenemos $X\\sim N(0,\\sigma^2)$, por lo que nos queda $\\sum_{i=1}^{n} (X_i - \\bar{X})^2 \\sim \\sigma^2 \\chi_{n-1}^2$\n", | |
"\n", | |
"Finalmente, recordando que si $X\\sim\\chi_{k}^2$ su esperanza es $k$ y su varianza es $2k$, nos queda\n", | |
"\n", | |
"\n", | |
"$$ B_{\\theta}(T^2) = a_n * \\sigma^2 * (n-1) - T^2 $$\n", | |
"\n", | |
"$$ Var_{\\theta}(T^2) = a_n^2 * \\sigma^4 * 2 * (n-1) $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7daf7667", | |
"metadata": {}, | |
"source": [ | |
"$$ $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "b6de5baa", | |
"metadata": {}, | |
"source": [ | |
"Ya sabiendo el sesgo en función de $a_n$, queremos determinar el $a_n$ para que el estimador de $T^2$ sea insesgado. Un estimador es insesgado si la esperanza es igual al parametro que estamos buscando estimar.\n", | |
"\n", | |
"Entonces la pregunta es... ¿cómo logramos que $E[T^2]$ sea la $\\sigma^2$?\n", | |
"\n", | |
"$$ a_n * \\sigma^2 * (n-1) = \\sigma^2 $$\n", | |
"\n", | |
"$$ a_n = \\frac{1}{n-1} $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ff0c9e84", | |
"metadata": {}, | |
"source": [ | |
"$$ $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d0a71757", | |
"metadata": {}, | |
"source": [ | |
"Finalmente, buscamos el $a_n$ para minimizar el error cuadrático medio\n", | |
"\n", | |
"$$ ECM_{\\theta}(T^2) = Var_{\\theta}(T^2) + B_{\\theta}(T^2)^2 $$\n", | |
"\n", | |
"$$ a_n^2 * \\sigma^4 * 2 * (n-1) + (a_n * \\sigma^2 * (n-1) - T^2)^2 $$\n", | |
"\n", | |
"La derivada respecto de $a_n$ igualada a $0$ nos devuelve que el $a_n$ que minimiza el ECM es $\\frac{1}{n+1}$\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ed656f6a", | |
"metadata": {}, | |
"source": [ | |
"# AKAIKE" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "568eb2c2", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"from statsmodels.distributions.empirical_distribution import ECDF\n", | |
"\n", | |
"with open('clientes_akaike.txt') as f:\n", | |
" data = f.readlines()\n", | |
"\n", | |
"data = [float(d.strip()) for d in data]\n", | |
"ecdf = ECDF(data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "e007edb6", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAACdAAAALICAYAAAB180AuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACu2UlEQVR4nOzdeZglVX038O/pWdm3YRcZ9t0FEHcF3FBcE/cVYzRq1CzGvPq+JhLfxORNzOoWjQtRE3eNiGsUUeMGqCwiIAjDDsPMAMPA7HPeP6qavtN03769TN/umc/nee7TfW+dqvrdunVqOfWrU6XWGgAAAAAAAAAAANjWDPQ7AAAAAAAAAAAAAOgHCXQAAAAAAAAAAABskyTQAQAAAAAAAAAAsE2SQAcAAAAAAAAAAMA2SQIdAAAAAAAAAAAA2yQJdAAAAAAAAAAAAGyT5vY7AAAAAAAAtg2llJOTnJykJvlgrfXWfsYDWxP1CwAAYGL0QAcAAAAAwBZXStk3yReSvCPJnpJ7YOqoXzNTKeWcUkotpVxbSlnU73gAAICRSaADtrhSyhltI0EtpSzudzxsWzrWvTP7GIM6ANOklLKkrWtn9TGGkzvq/Mn9igOmQillccf6fEa/4wEAZoZJHHd/NMnuSb6X5A+nOq4tqZRy5uBxUb9j6UW332g2nrOMtfxnwrngVNkW69fWqpTymiSnJ7k3ybNrrcsmMI1ZV18naqZ811LKWW0MS/oVA2wLZkqb02w7xoNuXI+EyZFAB2xm2EnqmT2Oc+ZMOLEFAGDbUUp5escxaC2lnNDjeD0f75ZSdiulnN9R/gullPn9iKlj+HljTKuUUj7UUf6KUsr+HcPPGhZjL69n9/I9ALYFw7bZvbzO7HfMM0Up5feTnJbkuiTPq7Vu6HNIsNVQv2aeUsohSf6hffvKWuvF/YwHAKCfSinv7jhPXtatjXXYeD3nIZRSHlJKub2j/J/0I6apbH8uQzfXjOe1ay/fg/uTQAfMahqkAUZWZshdu0CjbEU9Yswgrxj2/uVTOfHSPF7p3CQPaz/6VJIX1FrX9SumsZRS5iQ5K8mr249+meTxtdabpjMOABiulHJ4kr/NUC9Mt/c5JLYQx73TT/2aedrj8k8k2SHJX9daP9vnkIAZrugFDWaMMkN6R9yatMdGL+n4aI80vfRO5TwelqYtd1GSmuQNtdZ39zOmsUyw/ZktaG6/AwC2frXWs9JcyAMAgEkrpeyW5Bnt21VJdkzy4lLKn9Ra10/B9PdJ8u0kx7QffSzJ79ZaN/UrprGUUuYm+WSSF7Qf/SLJk2qty7uM9pQkN/cw+esmGR7A1uoDSd4/Rpml0xHIdKu1Lu61bMc+avskL6q1XrSFwqJHtdbzkpR+xzEetdYzk5zZ5zCmhfq1VXhrkkcm+WqSt09mQrOxvgIADPOUJPu0/w+2m74iyZemYuKllEcn+VqSnZNsSvJ7tdYP9zOmsUyg/fnmNDH3YuUkw9tmSaADAABgtnlhkgXt/29K8tE0dxc+LcmXJzPh9nGn5yY5vP3oX5O8vtY61l3gWyymsbTd+n86yXPaj36a5LRa651jjPrrWuuSLRgawNZuaa31l/0OYqZrHyV5Ur/jgK2R+jXzlFLmpen15B1J/rnbTTgAANuIwad23JDkw0n+IsnTSimLaq3LJjPh9glM56Tp+XdjkjNqrZ/sZ0xjmWD783rtD1ueR7gCAAAw2ww2cPwkTU/HS4Z9PiGllAOTfD9DjRf/VGt9XQ/Jc1ssprGUUhYk+WKGkud+kKbnuTu35HwBAID7q7Wur7W+q9b6zlrrXf2OBwCgn0opuyZ5Zvv2P9I85r4mmZfkxZOc9pPT9Dy3Q5L1SV7YS/Lcloyph3lPpv2ZLUwCHbDFlVLO6HhW/OJRyjy0lPJvpZQrSin3lFLWllJuKqVcVEr5cCnl+e3FwcHyS0opnTuSd3TMY/B11ijzOq2U8plSyg2llDWllDtKKT8rpbyzfdb4WN9nbinlTaWU80spK0spd5ZSLiyl/FEpZX4pZXFHDGeMMP5Z7bAl7ft9SinvKqX8spRyVzvs2R3ldyulvLKU8slSyq9KKatKKetKKbeWUr5ZSnlN2+vIaPHeL55Sym+VUr5VSlnaLu+LSylvbO+QHByvlFJeXEo5ry13bynl56WU15ZSRn1sQCllh1LKC9rf7aL2O60vpdxeSvleKeVPSik7jrWce9UR4x3tsvllKeUv2oOf8UznMaWUj5ZSrm6XyapSyuWllPeUUg6ZqnhHmfdAKeXUUsq7Syk/LKUsa5fZne0yfHcp5YE9TGdc9Wgc8Z3csQ6d3K4bZ5RSvtOuhxtLKf81wnjHlVLe1663K9t16OpSykdKKQ8ZY54LSilvKKWc265/g8vj16WUb5dS3lZKOWqE8YbXr31LKX9XSrmynf+yUsp/l1J+e4z5D37fM8cot9n8upTbs5RyZinlp6WU5aWpwzeXUv6rdNT3LuM/q5TyxVLK9aXZbt1Tmu3gj9vvd0pH2cWl2T5+t2MS3y3330aeMWwex5ZS3l6a7cqN7fqzqpRyVSnl30spj+ghzn1KKX9Vmm3ine3vtrSUclkb/++VUvYcazpjzOOppZSvlWabcm+7TvxDae7YGc90Jrx+ToVSyiNKKX9Zmu3Xre06sbKN5wOllKOncF4DpdlW/lfHb3tHuz7+n1LKLl3GHV6ndimlvKM029pVpdnG/7g0+6I5PcQyrzT7tC+Xof3wvW0d/UQp5bdLx75opBi6THuzbdWWWB7t+IeWUv6plHJJKeXuMrRPvqSU8h+llJeXUnbqKH9eWycPbD96xQj18bxh89itTGLfPx6llDmllNe3339l+5v+vDT763HtM0opp5dSPlWa7dPqdloXlVL+pjRd0k+JUsoRSR7evv1E27gw2DByeilljwlO95A0jRcHtx/9da31j/oZUw/z3S7JV5Kc3n70nTQ9z929JeYHwOSUKTjPKCOf4z+hPba5uT22uaGU8rFSyqE9xnVkKeUf2/32irL5Ofw7SikHjzDOktKl7aWj3ITaYEY6tmuPFf+7NOcYa0opvyml/MtUHWeUUh5QmnOEa9rp31xKObuU8sRxTmenUspbSinfb2NdV0q5rZTyjVLKK0oPx809zmfC50YjLd8RymzR495R1uVnl1K+Upq2jA2llIs6yp85WL7H5XNCaY6nB8+jby6l/Gcp5fjJLJeOsr3WAfVraL4TOl8Y/tuXUnZuP7u0NOdKS9u68Khh4+1VmvPuy0rTjrK8NOeiD+0yrzM6ls3i0rRP/XEZaue4u13Gby7d22O7rq/Df+PStOl9pDTbn9XtsF3bYeNZL59Ymjacq9pYB/cJXynNed+uI4yzbzvs8+14nW2KXy5NO++UXEsspWxXSvnfpWmLHvxNflhKefV45lEmeV4/Bd9jStq/yzja+8YZ30h15v+06+6KdtgfjjDehM/pywTbBEeoCzNl2z1t7dql3e6k6bVy8LPh+8/Nrq2VGX49oWP6s67NaZR5zy+lPKOU8t5SygWl2d6sL8027KdtnRvz2uI45jfhY8kR6tThpZR/LaVc29ap20spXy2lPKHHWHYvzXb7+20M69vf8uelOU541Ajj9FrPejq2m8zyaMd/fGm2K79p6/Lq0mxjLizN9b9nlDJ0zbON59qOSXxshPp45rB5HFyaY4OvdKyjq0sp15XmWO20bjGOR2najf+mrber22Xy7VLK88Y5nfmlud77zVLKLe1yXVaa/dibSikLpyrmJC9IMji9T9Rar03yw/b9hG88LqU8PcnZSbZLsjbJc2utn+9nTGMpk2h/ZprUWr28vLzueyU5OU2GdU1yZo/jnNkxzskjDD+jY/jiEYa/KU2XqnWM15Ed4yzpofxZw+azIMlnxhjnziRP7PJdd07y4y7j/zTJQzrenzHCNM5qhy1Jc6F16QjTefY4v+vPk+wzSsyLO+NJ8v4u0/lCkjntsvpcl3If6rKMzush3ms6f88Jrqtzk3y2yzx+k+Sgjvcjrs/td/33MeJdl+R3JhHrGR3TGqkOnNnDMrsnyXO6zGPc9WiC24XTknxzhOn+V0f5kuRvxohnU5I/G2V++yS5tIfv8ukx6tcJSW7rMv6/JxkYJYau681I8+tS5vlJVo7xXb6cZIcRxp2T5pF8Yy2LW0ep891eZ3SMc3KP4/x1l+/56CR39DCN106iLv1Dl+kuTXJihraZZ40yjUmtnxOoMyePsU0Y7bUhTZfdE95OtvN6QJILx5jXLUkeNtY6nuSINNvv0abz2SSlSyzHJPl1D9/95NFimMxyn6Ll8dtJ1vTwHU7rGOe8HsqfN2w+S3oYZ9R9/zjWjx3TnLCPNo+fJXlox/szRpnOLkm+MUa8K5M8bbLrdDu/d7XTXJdkj/azIzrm9YZxrCtndox/U8fnf97vmEYos9n60v5+nevXV5Ms7CHWszrGWTwVv4mXl5fXtvTqZZvdZdyexkuX45/c/xz/Xem+/31kl/kMtONvGGM/ft4I4y5J9+PuSbXBDFvOpyb5eJfp3JzksEn+ro9NcleXebwjHefuXabzuHQ/D61JfpRkz0nGO6lzo4x9zrLFj3uz+br8ymx+jDL4uqijfNfl3/l92+mtGyWG9RnlvHSs5TLOOqB+Dc1vl0zifCGbt5sdkOTKUaaxIcnz2nEelOTGUcqtSXLKKPM6o6PcQ5Nc0CXmXyRZNFbMPayvrxllfd211/Uyya5pzgfGqoNnDhtvTnprT/xWkh0nuR7sk+RXXebxjSRP7uG7Tuq8vsdYz2qns2SU4ef1sMxGbf/OBNr7xhn/mR3TODRNO/nwaf/hFNbRCbcJZuZtu6e9XTu9tRPWdJy/Z4ZfT2inP2vanDL2NvusHpbTsiSPnmgMHfOa1LFkNq9Tz06yqst0xmqrem66Hx+PuMwyRj3rdblP0fJ4dw+/XU1He1qP5c/sKH9Qj+N8IsncSa4fR2Xz9svhr49mjOuR7XSOTXL1GPFekeTQya7T7fx+1E7z5x2f/V7HvI7tdV1Ju51P8lsZ2mfcm+Qp/Y5p2PCTh68vmWD7c4bq1JKp+D28ur/mBqCPSikPSvKPaRqVliR5X5rGh+Vpuls9LMnjkzxr2KhPTjI/zclIknwgTWJYpzuGvf9YmkSWpDlZf3c7/s5pDiRfl+Zg/KullEfUWn8xQsifTjLYC9NPk/xTkquS7JnkJUlemuY55b3YMU3C2vZJ/jpNQ8SqNAdASzrKzWnndU6aZXNbmu9+UDu/09KcaHw6zQ65m9emSdr7WprnuV+XpuHpbe3nv5XmRPVBaQ6O/7N93ZLmtzgzyZFJXl1K+WKt9RsjzGNumuV6dprGjJvTnHgemObRYs9vY/+vUspDaq1rxoh5NO9OMnhHxdVpTmwvTvMbPjdN49NnepjOZzPUTe+30nzfa9I0ph2f5A/TfOcPl1KW1lrPmWC83cxNs4y/lCZBc3D+ByR5VJLXp1lf/rOUcnyt9fLOkSdRjybi/6VZP76apk4tSbJHkr07yvxzkje2//80yUfS/EYrkxyd5PfTrG/vLKWsqLW+b9g83pPmAD5JPpWmntyUpqFk7zS/y9PTHDCOZvskn0/TgPjuNPXn3jR15a1p1sGXp1nub+3tq49faXq6+3SaOnBDmu92WZJbk+yfpivoF6ZZBzu3UYNem+ZOmKQ5oP9wmkavlUl2T7OcnpgmcXfQTUmOS/KwNCdMSfI7aRp9O93Y8f/cNI0qX01ybpqTo5VJ9kqT9PSmNHX4raWUX9daPzbse85PU992TbMd+2CaXpCWttM+MM1v/uwRFlNPSnNn7OCdOLem2W7+JM2Fg9PT1NXPpfntu5ns+jkV5qbZR305TUPSVWmW/35p1u83JVmU5L2llCtqredOZCallN3TPMpxcZr6c1aSb6eptwvS7DP+ME3j3tfb7cv1o0xu+zS9XO2VZnv7rTQNKEcn+bM03Y0/L02C7UdGiOWwNHdw7dJ+dE6a+n1VmvpxcJJTMrRdn3KTXR6llL3TJN4uSHJ7muOOH7X/L2y/w6Nz//X8lWm2xd9M8xt/Ocnbh5W5Z9j7qdz3d/PJNBeLk6bh8h/SXIzaK82ddi9IU59H1db/b6e5SFvT1MOz0+zLkua46Y/TXOT4YinlUbXWn0804NL0SvCy9u3Xa63Lk6TWemUp5YI0275XJHnvOKZ5bPsdBvdlf1pr/bt+xtTDPHdO8vU0xwlJcwzxwlrruqmaBwCzwqvT7At+mKZd5Mo0xx3PTXNcu1OST5ZSjqy1rh9h/PemaQtJmmP39yX5nzTHqrulOTZ9Trqfe41mKtpgBv3f9nsOnodem+Y89Iw051T7pjn3eewo43dVmh5azmlj25TmvOtzaRKQjktzznhmmjaObtN5RJL/TnPctjzN8v15mnOvPdN871cneWSaNpGTR/ldxor3DzM150ajTX86j3sH/WGatoYftfO7Ms36e+QEvsJD0qwXKzK0bOalOXf+kzbG95dSrqu1fn0C0++V+pUtcr7wubbsX6dJqLg3yWOS/EWa7/+RUsqFaer0dkn+T5LvpTkHPK19vyDJWaWUw8Y4fv5gG/fn05w/3prmnOwNadrZHpLky6WUx9ZaN/W2RO7nYWnO8W5K8vdJzk9zjvzINBeFx9T2EPOdNOtU0qwL/5qmnXR1mvr4qNy/zSntvJKmLejr7bi3p6l/B2dom/WkNOvwK8bz5TpinJvmNxnsdes77fSuT9P++fokT0nT1tVtOlPZzjEZk23/nkh730R9Ic0yfn+a7fLyNrblyeTr6BS2CT4kM2Pb3Y927f9Ksx69PkP7jeNGiO2mjv9nw/WEWdfm1MXcdp5fSrOdvj5N0vaBadbR30mz7/xSKeXYWuvSicxkio8lj0uzjJem2fednyZh8vHt+12S/EMp5du11itGiOUFadbhkmZ/9NE0xwo3p9m/Hp3kqWnW5y1issujlHJ6kje3b3+ZZt/4qzTHYjun2SedOsJ3OC7NvvOb7fu3p9l+dur8jeekWUbfbOP9VZpt2e5p2sx/P801lpemWY/eMZ7l0PF9ds7QcXbS1Iez0rQbH5amLrwyQ9ug0aZzcJp96a5pjs3/Nc2+6Po0y+UpabaDR6TZl55YJ/FI+lLK4Wl+o6RJIhz02ST/kub3fUWSt4xjmi9KcwPI3DT7nmfUWs/rZ0w9zHNS7c9Mo35n8Hl5ec2sVzbPiH5/mh3tWK/OHs1OHmGaZ3QMXzxs2Dvbz1elSy8qaRr97tejRoZlb3cZ/6kdZX+YZLsRyjw9Q3fc/GyE4c/qmMY5SeaMUObNHWVquvdAV9McnBw/Ruxd7/JMc0A0OL0njDB88bCY/nGU5bukHb4sTYPxH4xQbp8M9aT15QnG+8SO5fyqCa6nx3VM45IkO49Q5mXDvvf91pEkr2qHbUhHr3/DymyXobsKr80E7hDpVgc6fqN5XcZ/QIbumv3ECMMnVY96iP/kYcuyWy9kT+wo98ZRysxJk6hY2/Vp145hCzN018jfjxHXHiN81lm/1ic5dYQyu6ZJYhv87Y8aoUyv25bB+S0ZKb40F1xq+33njzKN12WUOpyhu/R+2m3dG2VZdP5uJ4/xPRZ1/g4jDJ+fJmGqptlWzBk2/NSOeT2jy3RKkt0msA7ulWZ7WdM0Fu0/QplT2t98MI6zpnr9nGCdud+yT5M8uX2X8XdJ09Bdk/xgvPPvmM4nOpbZEaOUOSjNRYDRti+ddequJA8aZf0Z7E31F6PM56ft8E0Z5Y7SttyOw9eRbvVsnMt9UssjTWPY4PSP6xLHvCQ7jfD5ktHWzRHKTmrf3+P6cXrHNP47I+yH0iRHdm7/7/fbpbngVpPcneRRo8xr9wz1NDDhdbqdVmc9fu6wYW/sGHa/bfso68qX0lwgGlw/u959O00xnTlKmcHhv8jmPWF8KuM4PhlWr5+csY/1D5/Mb+bl5eW1tb0yvnaT/YeNOxXnGYuH7Z8/mhF61k7y5x1lnjXC8Kd1DL8gI5xTdJQ9YITPlmT04+6paIPpXM7d9o8f7Sjz4An+pp098J8xwvCdklzUGc8IZeZlqLfm72aE48G23OmZRJtIpu7cqHP5njxs2LQc946wLv/HSOtyR/kzR1v+w+Zb09zANtKyeWiGemJZkmHHUN2WyzjrgPo1NI1Jny9k8x4+1iR5+Ch1a7DM0jTH+IeMUO71HeXu1zNT7t8T1P16BknTtvHJjjKvnuT6elmS3bssw67rZZK/7Rj+bxmhzbotNzC8XrTfpWvvMmmSE2ua86UJ9UaYJnlg1G1SW+bDw5b9SN910u0cPcZ7Vrq0Q4y1HDJG+3cm0d7XY/yddWZjkqd2KTupOppJtglmZm27+92ufd/v1sNvvDgz+3rCrGpzGmvZJzkk3Z+6cVwbY03yfycYw5QcSw6rU78Ypd49vqPMP44wfK+O77MsXa5hZpzHMb0u96lYHhnqYXdJuvSimubGhjLss8Xd1s1hZXdIsm+X4SXNTQqDdW6XCa4jf9cR05kjDJ+b+/fWuHiEcj9oh/0yoz/Z7MQMnXNMaJ3umNZfttPZMHx+aZKMa5rEzBGPX4avK2kSmwd/87syyrZhmmM6eYThJ3cM/1Im0f7cUaduSm95G/fbl3qNY3n3OwAvL6+Z9cr9G1DG+zp5hGmeMdrOOsmH2s9/PsF4Rz1YGFZusAv7jenSKNDueAen+ehhw77efr42oxwMpTkQ+lnHNM4YocxZHcPfMUW/2y/a6b1nhGGLO+Z3fUY5scpQY0hN8uMu8xp83OmKScT7pXYaX5ng+O8b7XcaVu5ro60j7W91VTvsfWPM7+iO6TxpAvGOWgfGMY0/yNAB4fCD+UnVox7m3blduCrdG3a+3Zb76hjT3C1Dj4N5dcfn+3XM65kTiLWzfo36u6bp+nuw3D+PMLzXbcvg/JaMMOzt7bCl6ZIs1ZY9vy37H8M+H3zc5T9M8nc7eQrWgwd3TO+EYcNe3DHsfgmtUzDvt3RM/yVdynUmdJ811evndC77bJ60Pe4G0zR3QA4+Kuh5Y5QdvICwbvi6OqxO/UGXafxNhk4Adxk2rLMB8gMT+C6j1rNel/tULI8k/zuT2P9lHAl0PU5v1H1/j+MPHhutT3LgKGUGsvmjR84YNnzHDCUKv2WM+XVeRJzwI6AydMHkziQLhg3bM0MXi/+mx3Wl8zViA3kfYjpzlDIjxfzZdLnQPMp0zhplWqO9utY9Ly8vr23t1WU/MtLrrGHjTsV5xuKO6dySUS5qpuk9YPAi7v3OJ9L0hFXTHPceOIHlsGSk79gOm4o2mM7l/POMctEyTQ9lg+XeNIHvsU+GjhP/u0u5kzp/2xGGvzRDx5BdL1i0+++a5IcTiHeqzo06l+/Jw4ZNy3HvsHX5zoxxLpnxJSSNesyfzZNLnzNs2KjLZZx1QP1qxp+S84VsfoGy2zF15zow2qMet0vTK9to28YzOqZxSUY51k5z49uKttzFk1xfHz/Gshl1vWzjGEwsujRdEmom+kqTMDR40ffNE5zG4I2syzN6EsSOGbo5b6TvemCmoJ2jx3jPyiTPhdKl/TuTaO/rcd6ddeZjXcpNuo5mkm2CmVnb7n63a3fdbkxgen/QTq8f1xNmVZvTVCz7ND361SSXTnD8KTmWHFanHtJlGj8ZbR3IUHJRTfKCCXyXUetZr8t9KpZHhjoE+OIEvsPi0dbNCf6+u2doH/bbExh/foaOOy7P6MnyD8jmj8JePGz4YzqGdX3UeYYS9G+axPcuaZ6EVpN8Y4Thz+mI57Re1pWO15okJ86QmE4eYfjJI8RcM4H252H1updX17rn1f01EID+urn9e3Qp5aQtMYO2i/iT27fn1Vqv7lL8Qx3/P2nYNB7fvv1OrfWWkUauzZ7sEyMNG8Unx1E2pbFPKeXwUsqxg68Mdd/94DEm8cU6epfOF3f83+3Rp4Pldiul7NpDzHuWUg4bFu/tPcY7mie2f6+qtf6wS7mPdhl2dJJD2/8/121mtdZfpe3WPkPd+m4xpZSdSykHlVKO6Vhm97aDd05zJ2WnLV6POny61rphpAFtF9Int2/HWqZ3pLnDJdl8mS7P0CMqXtbWvYka9fevtX4/zaMRko66PsWe1f79Wq313q4lmztPk/uvX4O/7TNKKYumLLIxlFIWlFIeWEo5umMdLB1Fhtfdmzv+f+UWCGmwzq9K8+iU0Yz6m0/R+rlFlFJ2KKUsHlbnO7fVE9lWPj1NI/f63L+L+eEG1795ae4uG0lN0yPEaAYfZ1Vy/21UZzf4/zhGLFvKVCyPwfV8t1LKszJNpmDfP9I052SoPny31nrdSOVq8xiif+8yqcdn6LG8XetVhpZrMsF6VUrZKc3j5pPkc7XWtZ3Da623Z+jxCi9tH606ltrx/zNKKQtmQExj6Yz54Wke0QLAtunz9f6PhUuS1FpXprlAnzSP4btP+wi8wceAf3G0Y4GJmIo2mBH8R9vecj+1eeTUqvbtwSOVGcMpaY4Tk6ZniBHVWs9PkwAymsHjwx/VWm/qUi4ZOi562ATOeSd9btSDfhz3fqVdZ6fCHWkSV0bTuWymvD1A/drMljhf+HSXYZe0f2tGadusta5Oc3NoMvZ3+vc6yqNZa/Mosy+2bx9UStlrjGmN5oZa6/cmOG7SbMN2aP9/T5d2356UUgZKKfuVUo7oOPc8Kk1PVsnEzj/3TdMOmyRfqLXePVK5WuuqNEkQo5nqdo4pM4H27+ls7+t2/WEq6uhUtQn2e9s909q1x2UmXU+YrW1O41FK2a2Ucsiw5X1nO/joUsq8CUx2qo8lf1lrvajLNAbbckfaFw625d6UsZf9ljIVy2NwPX9cKeWQKY2ui1LKvFLKA0opR3WsH/tl6BrjRNr6T0iTvJs0vUpuHKlQrfXGNImDoxlcrtfVWi8YY56Dy3W/UsoDe450c6ckGRx3pGvnX02TGJj0/pj4wePWBUmeOUNiGsuk2p+ZXhLogG7+otZaxnql6blsoj6V5qRiQZIfllLOKaW8vpTyoCm6wJg0B4Dbt///ZIyyP89Q0sJxHZ8fkuYOxaTpYa6bC8cYPmhVrfU3YxdLSimnl1LOSXO30C1Jrkxzd87g6/S26Fgn3L/uMuzOCZTbaaQCpZRHl1I+U0pZnubOwV8Pi/fVPcY70rQXJDmsfTvWAd75XYZ1Np58t5RSu73SPI4zae5On3KllANLKe8ppSxJ8ztfk+ZEfHCZdTZ8Dl9u01GPBl3cZdhD03HhoYdlekJb9r5l2iYefKp9+9wkvymlvLuU8vRSym7p3boxYk2G1o8jSynzxzHtMbUNBQ9p376ih2Xx5rbs8PXrrPbvoWmWxcdKKS8ppRw4lfG2Me9QSnlbKeXiNN1zX5fmAtHgOviLjuLD18EfJhlsuP+nUsoFpZT/U0p5bCll4RSEN7g9vmR4csowF2WooWq4Sa+fU6mUsqiU8q5SypVpusS/NpvX+a92FJ9IY+rgNm5ekrVjfNdLO8Yb7fsuq7Uu6zK/FR3/D983HN/+XVpr7bZ/2ZKmYnmcnaZBN0m+VEr5binlj0spE7nwOaYp3PeP5JAMHRtN1b702jGWa+dFkonWq+dmKO7RblgY/Hz/DF1g7ub9GboY/qQknx9nQ+eWiGks/5OhfeUDk5xbStl/gtM6qIfj/cVTEDPA1mqsdpMztvD8Lx9j+OAx2vDjs4dk6AaZH0xlQJmaNpjhxvqeg8doI7ZRjKFzvlNxXPT4Hs413tOWnZemN4qJxDuZc6OxTOtxb2us8/fx+MVoN/4l911YHLwx9kFTON9BD4n6NWhLnC/00ma5rE1wGavcWN+pW50fPnyi69IlYxfp6viO/ye0vpXGS0sp302TMHlTkiuy+fnnQ9riEzn/nOrt7FS1c0zKJNu/z2r/bvH2vnTfvk5FHZ2qNsF+b7tnUrt2T8rMvZ4wW9ucuiqlHFdK+Wgp5ZY0x9hXZ/PlfWZbdCBDiU7jMdXHkhM6T2iP9Qa32z8cLZF8GkzF8hhM0NwjyS/bbfbvlFKOmOpgS5M09/ullJ+k2ZfekObRwp37hcFk+5mwLz2wh+X6lY7xJlqvBhPQVmWEJOla67oMJc8/u5Syy/AyI3hbhur8n5VS3jYDYhrLZNufB13XS97GNLRDbNUk0AF9VWu9Msnz02Tez01zMfh9aU7slpVSPltKOW2Ss+k8YFo6RjzrM3QXQOd4nQe8t6e7sYYPunOsAm0DxoeTnJNm2YzVsLPdGMO79YLVeSDca7k5wweWUs5Mc2H3+Rm7IXiseEeyW4YaIrv+nklu6zJsoneGbj92kfEppTw1zcH0G9I8jmAsmy23aapHg7o1QE7VMn1jhg5cH5gmuewrSZaXUi4qpfxZKWXPMaa5olujS2tw/SiZ2EltN7un+S3Ga/hve1aSd6Zp9N45zaNEPplkSSllSSnlvaW5g2lSSimL05zEvStNI9T96vYYca5P8owM3X15Ypqu3r+f5M5SyrmllN8tE09UHNyWjLUN35DNE7k6zaQ6f0Kaxui3JTk8m/fuN5KJbCun+vuO1Ytit33DYH0dsffWaTLp5VFrXZHmDszr0/xmJyf5+zSNEne2jY3Pn2xD4xbY94+k52OjzKx96WADx3UZ/eLQ2UkGey/p5S7BZWmS2gYvxD09yadL7xeHt0RMY9mU5OUZ6vHi4DRJdFukkRiAGa3XY7TRjs+SqT9Gm4o2mOEm+j17MduOi6bi3Kir6TruHaZbW8N4jfU7JkO/5R5dS02M+jVkyuvFGD38D8Y6Vd9pPNuEia5Lk133J7W+tQlOX01z08/JGfv8cls6/xzVZNu/p6u9r7VF23KnsE2w39vumdSuPaYZfj1ha6zzr0qTmP7K9JZINJvacocfz+3R8dlsb8v9bpLXpuksYGGadf4jSa4opdzaJi8/auTJ9K40vQ//OMl70zwpYqzt3TaxLy2l7Jjkt9u3X+pyDDd44/HgbzSWn6Z5bPM97ft3lVL+qM8xjWWy7c9MIz8K0He11i+XUs5N8rwkpyV5bJqD0N3az55XSvlakue23exPanaTHH8qjdjF7jC/k+RV7f8XJfmnNAcHNyW5d7Cb3lLKx5O8LGMnYWxRpZQnJHlH+/aaJO9O05hwfZJ7BhOaSinvTPJnUzDLyfyenY1kv53ud7B2mspG3ZSmm/7/THMAuirNMvtmmseL3tXe7ZBSyqlJvjM42vDpTGM96rbedi7TNyX5bo/TvKfzTfsoh99qk4yen6YB7/g0xy0Pbl9/Ukp5Sa31nFGm2e+63rksPpHkbyc6oVrrO9pkmhcleUKaR8HsmKZx5PeTvL6U8s5a65kTDzefSNOVf03z2KJPp7lL7fYk62qttb04Mvj7j7QOXlFKeXCSp6bpCvxxSY5IcyfjKe3rLaWU08d4zEw3U1XnJ7x+TlbbYPjZNI0R69PcIfflNNugOwZ7kSilHJyhxwxPZNs++H1XJnn0OMa7cewis9KULI9a649KKYcneXaaxsXHpamLO7TvT09yfinl6e2jOydiuvf9U1WvHpmhxzuNpZeG8c20ib6Pa98emGRTKWN+9eeUUnYe63FgtdZb2/3s99Mko/1Wko+XUl7a7U7bLRnTWGqtG0opL0yTRPf0NMm43y6lnDxGb5EAMJ36fV42XlNxXPSdJH84jvHGeiTVaLbosp2m495OvbSR9Wq2rXcTNRu+57SdL2wh07GMp3Ldn4j/k6YdJ0m+lyaB5udJbk2yevB8qJTy/TRtjTPh/LOv7RxT1f49Te19Ge0xf60pqaNT1CbY723aTGrX7mqWXU+YFW1O3ZRSjkzyr2l+w6VJ/i7JuUmWJLl78NHZpZTfSZOclUyuLXe6jiVnuilZHrXWD5ZSvpDkhWl6/npMmmS0vdMkL59RSvlIktdMore9f85Qr5T/leaR05ekWV/W1FprkpRSrk9yQGbGvvSKNPW8V9dOYF6/naHHzL+slPKyHsZ5RZJ/G6tQrfV/SinPTHMD+nZJ/qGUsrbW+v5+xTSWibY/M/0k0AEzQnti8dH2lVLKYWkuBr4hzY7kaUn+KskfT2DynXfc7t2tYNtl6uAdTJ3jdSZNjXWH0KTvIOow2NX71Uke1eVEZbyP/NhSBuO9I8kjujSiTibeOzv+7/p7jjG88+LyylrrL0ctuWU9N8mu7f/PqbV+e5RyYy6zLVyPetG5TFdPdpnWWn+W9pHJpZQd0pzEvyTJi9PcnfmZUsohtdZbRxh9j1LK3DF6oRtcP2runxhZ05zIjHVH/Q6jfL68cxpTsCxuSJOE97eleTzsCWkOsF+XZlm8o5Ty81rr2eOddtsI8Jj27btqrW8fpWgv6+CmNHcuf7Wd9l5pTkx/L83vd3iSz2TohLJXd6RpwBlrGz63S5xTun5Owqlp6mOSvL7W+uFRyk12uz74fXdMctUYj3fa0gZj2XeC4492R+Rwo9XHzhgmvTzacT/TvlJKOSBNI/Hr0zSEnpTkg2nq6ERMx76/c5s3VfvSZZNIju3FyzP+Bqbt0jQGfWSsgrXWmzoaMR6Y5iLGulLKKwcbuqY7prHUWteXUp6bpoe7Jyc5Jk0S3SljPLIKgP6Z7HnGVOnch0/0GG00U9EGM52GHxd1S3If67ho/yQLt/C5xlScG/VkGo57t5Sxjm87yywf9nnnxauJ1lP1a8h0ni9sCXun+w23nb/B8HVpugxf3+7sdcTS3P3zu+3bHyQ5tcsF3Jl0/tnvdo4pa//eku19PZqyOjoFbYIzadvd73btscz06wmzsc2pmzPS5FNsTPL4WusVo5Sbirbc6TiWHMuKNHVqIP1vy52S5dHeaPreJO9t933Hpkn2fUOadfBVaRLe/mW80y6l7JzkBe3b/6i1vrRL8ck8BWkq69URSXaahvVsIk/heHS7bfzNWAVrreeWUn4rTecE89P8vmtrrd3aXLdoTGOZYPsz08wjXIEZqdZ6Va31H9N0+T3Y3exEu0m9JkPdFT98jLIPTTL43PFLOz7/TZI17f9jJX6cOMbw8Tim/Xv2aBfQ2wO+46dwnpMxGO93x7gDecLLqNa6JslVPU7nYV2G/aLj/8eMWmrLG1xmK7qc7CYTWGZTXI96cXGG7n6Z0mVaa72n1vqNWuvLkgwmeG2f5oR+JPPTNOh3M7h+XDl4Z16Hu9u/Y53UHDlKvOuTXNa+fXTpoUuiXtVaN9Zaz6+1vjXN3YGDhv+2vR5wH9Px/2e6lJvIOri01vofSR6f5k7IJDm+lHLoOCc1uD1+0BiPfHhwRu8ifYutn+O0xZb3MIPbuIE0d2n208/av3uVUo6YwPiD9XHXMcqNWB9bW2x51FpvqLV+KM0FxMGGh2eUUoZ3xz/eOrkl9/2/STI47W77yrGGT+e+9OXt38vTNC6M9bpx2HhjqrVelybJ9eb2o1ck+dcu2/AtHlMPMa9N0zPMee1HD07yrVLKLlM1DwCm1KTOM6bQLzJ0bPK4bgUnYCraYKZT53yn4rjo+FLKlD86rMNUnBtNyBY47t1SHtrtcUillP0zdEF4+Hp3d8f/o9bTtvefRaMMVr+GzJS2t4k6aYzhnduEfi3jn3X8P971bfcMPYrwc6Mlz7WPO5vIufygqd7O9rudY4u0f4+jvW8qbbE6OoE2wX5vu2dCu/Z4241m6vWE2djm1M3g8r64S/JcMnVtuVv6WLKr9rrGYB17TPtUmvGainOeLbI8auPSWutfptmXDCZjT/TaymEZOt4ata2/7cRgx/HEOsxU70v3b5+ssUWUUg5M0wNnknwhY7eZvqZj9PG05X4jzY3K69PcqPahUsqISYzTFVMPMY+3/ZlpJoEOmNHa3jN+3r4d6eRmMKltQZdpbMjQRcWTSykHdZnlqzv+/+9h0/h++/YJpZQR77xod3C9dPnaq8GTxm53YjwrU39H60SNGW8p5aEZu5FvLIMnhoeXUro1mPxOl2G/SHJD+//vto1B/TC4zBaOdjLSniBMeL3qoR5NibbR6Eft2+e1DRtbwnc6/u/2fc4YbUAp5bFJBhts/nuEIte0f0c92SilPCjN3Uqj+XL7d3Ga5IYpV2v9cYYaz4cvizUd/4+6jczmPRJ329a8dhyhbaa9e+bcjo/Gux4O1vkd03SzPZpR6/w0rp9jGXN5t9uCV480bBy+kqET/T+a5LQm6ysd/08klsH6uFPb2HA/7f73xWPEsEWXR5uI+4P27dwkwxOYxjxm6Rg32YL7/mHHRqeUUh44Url2Xex2Z953MvS4kje2d8xPuVLKY5Ic0r79ZK3102O9kny+Lf/YMY79NtPeTfiEDD3y4zVpHsXQt5h6iHl1kmdkaBt3YpKv9/HYBoDRTcV5xqTVWlck+WH79jntxYSpmvak22Cm2Xcz9AjFUY97SikPS2/nf9ul6W1nS5n0udFkTeFx75ayW5rj5dF0Lpvh613n46m6XXwc9dxD/drMtJwvbEEv79JWt3OG6uCltdbbRio3Db6boWX8hm4JSCPotT3odzOJp1nVWm9Oc9NR0jzacsTzlLaXrm6JOjOlnWOLt3+P0d43lbZ4HR1Hm2C/t90zoV37vrbcUkovbbkz8nrCbGtz6kEvdX7fJM+c5Hym61iyF4NtuftlYkm8g+c8J4yWFNT2UvnELtPY4suj1npthmKdsddWWj/LUC90Lx2tPrTbrid3mc6XO/7fkvvSl2XoqR3/0EO76b8luagt//LxJJO1vbS+OM053UCSs0opI6230xZTDzH31P5Mf0igA/qqlPKcUkq3u4J2z1CPbyM9Y/2W9u8hIwzr9N7275wkHxvpBKSU8rQMnYj9vNb6w2FFPtj+nZ8mi32kA5Q/ztT2BjfY09oz2mWxmVLKIUneN4Xzm6zBeB8z0t1kpZQ9k3xiCubzwQw1mHyglLLTCPN6cZouxkfU3lX5V+3b/ZN8qtudLKWUhaWUN5RSFk487BENLrPtM8LJSLuefTjNycposU22Hk2l/9v+3T7JF9s7+0aLa04p5aWllAd0fHZwKeXxY8yj8wSg2/f5vVLKySPMd5ck72/fbkzyryOM+73278NLKfe7g7eUsmuSj40R5z9n6PE/HyqldN02lFIeO/y7l1JeVprHrow2zmPSLOvk/svilo7/u20jr+r4/4xR5vO6dGnEamM/rMvwgTQnBElTd5d0iWck/56hOxf/tpRyv/rQLrvXDP98mEmtn1NkzOWd5K8zyX1JrfXXGbrr7ZmllD/rVr6Usk8p5Xe7lZlELN9JcmH79jWllG4XJncYYXv2vY7//3SUUd+eLstsKpZHKeUpI617HcMXpnkkR9LcablsWJFej1mma9//gfbv3CT/NsqFlrcmOW60CdRa70zynvbt8Wn2yd3uGN+llPLGCcTauc58ftRSmxssVzLOuwTbO4qfkKHHwryxlPK3/YxpLLXWVWkeqXZB+9Ejk5zT7dgGgL6YivOMqfI37d8FST4/0nHHoNI8unM8pqINZlrUWm/J0IWkJ5dS7nexuU32+ODwz4f5eJLr2v/fVUp5SrfCpZQHl1KeMd54M3XnRt1im67j3i3pH8oIN7+WUh6coXOKG7L5zT6Dx7cXt29fOdI5Yynl2CTvHGP+6lem9XxhS3lQkrcN/7C9gPreDPWs07e22VrrXRk6tzs2zTIeLaFmYFjdvj1Dj3x90Sjr0sMy1JYyGYMx7pHRLxD/Q5K9RpvADGrnmHT79yTb+6bMVNTRKW4T7Pe2u9/t2uNty53J1xNmU5vTWAaX92GllEeNMN/tk/xnmkSvyZiuY8levDfJqsH/S5MUPFocIx3HDJ7z7JsREjnb/c1ZSbpda5v08iilvKBbu1hpbkQY3I4PX8+XJxl8alG3+nh1hq5VvqI9Rhg+n2ekeVzshLVPoBg8Tzwqyf8eYT5zk/xbuvRC3fZa+ZP27RtLKWd0m2+7Xet20/poBts9b0ry4x7HGWw3XZxx9qpba/18mrbaTWmOkf+jlDL8eta0xjSWHtuf6Ydaq5eXl9d9rzTdl9b2dWaP45zZMc7JIww/o2P44mHDzktzN9Xnk7w+ySlJHpKma+83Jfl1x7hvHGHan2yHrUlzF8KxaQ54Dk2y17Cy/9kxrUvT7ExPaOf5T2m6eK1puux96Cjf9Zsd0/hJmmfbH5/kKWlOjGuSn3aUecUI0zirHbakh2X7Jx3TujJN49dJaXbUZ6Zp5Fid5u6DEaeZZsc+OI0zevzt7/c79vh7Prdj2E1J3pjkUe3rT9J0Sbspzd1cNe1NaBNcV98zwrIZ/D3flyYx6oKOMvdbn9NcwP5cR5nr0hx4Dq6Hj0nyyiQfTXN3R02y4wRi7bbMHtCuv7X9Lf8mzUHTie06emE77H9G+30yyXo0zu3CqOtGR/l3d5S/PclfJnlSG9Ojkryk/Y1uacscO8K8Lk+TRPRbadb5E9PcxfXRdh2qSa5PssMo9WtpmgaZNUn+X5o6c2KaO7B/0xHf343yHY5Kc4JU09SzN6e5g/ER7TK9tl3mo9a9djrPatfFwW3LR5I8J826elI7/C/TPP6mJnnDsPFrmu7yP5jmAP9RaR7D8uR2vMH1cn1G2G6laVSqae6kemaaR24MbiN36qgHl3Ysk8+keYTACW18g3Wkcx08c9h8zmy/5/eS/K80j5o4Pk0Cx0vS3Gk6OO4XJljn39wxjZvTbF8elqaevitN/VnS/vY1yVlTvX5ORZ1Jcyfabe2wDWkSOJ/SLu8XpOlRYvjyHnXbPUYcu6Vp5Oncb/1ex3p0apr1+Stp1vcLR5jGWelhn9XtO7fDj0iTUDpY5uw0XaGf2P6Oz2uX+/JRxu9cHp9Ms508Ps0d/2ePsMxGmsaklke7LNYl+XqSP0xzl+RD23XwdzO0PahJ/n6E+f9lx/C3pnms1mB93L+j3KT3/eNYR87umNf5SV6YoeOaweOmzn3p/dbFNI0yP+ooc1m7fB6boX3Ra5N8Os2dw8vGGeN2Se5qp33JOMYraY5FaprtfhllfT2zyzQemqHtbE3yf/sZU8fw88ao97/oKPutJAtGqdc1zf7k2B5ee/X6Pb28vLy29lev+5FRxp30eUZ6PMdvy57Xbd+RoZvTBs87/jxD55OnpOmV4AdpHlM3fNwl6X7cPak2mIzjPHSsWHr4XRZn6Fh1Y5qLvqe28Z6R5IoMOy4aZToPS3OcNjidz6Y5xn9YmuPep6W58WOw3ejdE4x30udG3ZZvpu+4d3F6XJfb8meOsfwH14OL2vhvSVOvTkpzzP/naRL+app2haePMp1XdcR1RZpzxIe2y+xd7TR+3W35ql+bjT/p84Wxfvth6+6Y50jpsm3M5m1457d/P5um/g6eg363o8xPksyZxPo65nId6/dKc35yUUeZi5O8Lk2bzEPb2N+Z5nz4zGHjvrdjvAsydJ7+hCR/n2Z7cnuac9Ou5yJjfIe5aXqz6jxPeXa7TJ+V5BsdMXT7rpNu5+gx3lHXpUxB+3eGtgsTau/rIf6u699U1tFMsk0wM2/b3c927UM75v3NNO1Ah2VoHzq3LTfjrye085jxbU691Jk0x1iD878jzfWjx7W/7es6llXn8l48wTgmfSyZHvcv3b5zO/zFHd9nTZoOCU5PU68elaa98nNJ1o0w7qIMbcfWJPmLNOc7D0tzLHlJ+/1+PEYMk1oe7bK4M00y3u92rDdPSHOMOthGV5M8c4T5D/6my9LsH4/KUH3cvaPcOR3T+e80df+ENDe6fjjNNYAxtz89rB+7ZOh6T02z3g9uc1+QZp84vF7db11MclCa7Vvn9uYVaXpOPT7NvugtabbfG5N8fpxxPqpj2v8yjvGO6Bjvo6Otr+l+/fp3MrSdXZvkqf2KKZNsfx6lXt+U3tpxj82wfYzXONbhfgfg5eU1s169btCHjTPWTuKM0XbWGWqwGOv1z+m4yNgx/kMydLIw/HXWsLIL0iSGdJvPnUme2OW77prNE+SGv36e5sBo8P0LRpjGWRnlBHyEsvOyedLe8Ne9aZIORp1mpjGBrh3+0S7xbkjyBxnHSfwYy+YLXeZ1TZKDO96PuD6nacD55wwlOXV7rUqy3QRiHWuZvXKM+X86zUH9iL9PJlmPxrldGHXdGDbO29IcoI4V09okh44yr26v65M8uFv9SnMStbTLND6ZERo5O6b1xi7j3pMmEe6++XWZzmnZ/ISk2+vlw8btZZx7k7xklHm/rst4Z3SUe0iSFV3KXpLmjrER61M23w90e52XZLdJ1Pt/7jLt29OcPC9p35811evnVNWZNA1Fq7vM97tJjhnpt5pALHuleeRBL7/Pud3q1GS3E+16dm0PcYy0zA7LUOPkaPX51B5imPDyyOZJR91en82whKV2/P3TJAiOWDc6yk163z+O9WOnbN7AN/z18zQNJ13XxTSPEPt0j8vnmnHG+KKOcf98nON2Jts/dpT19cwxpvHwbJ78+b/7FdNI68so5RZlKDG7pmnImz+BdbmOFZOXl5fXtvgaz35klPEndZ6RqU2gG0jT48+mLjGNOH7GTvCZVBtMpjHBp2N+K7vE+hfpoS0jzXnotT3uX8d1HDFsPpM6N+q2fDN9x709r8tt+a7Lv/P7pkmkWD9KDBuS/H6X+Qy/2XL469o0F9O6rndRvzqnManzhbF++xHW3SVjlDuvy7I/oyOWh2bzhNHhr4szyo0m41lfe1h+Y/5eSXbP0A153V5nDhtvl2x+A87w1/I0iSKjLrNxrAf7ZSgheaTXN9NctB/ru06qnaPHWLuuS5lk+3ePsY/a3tdD/F3Xv6mso5lkm2Bm2La7nVZf2rXbaXTbti/uKDejrye085jxbU691pk0iZzd5vvujHENaByxTOpYMlOUQNeWeXGaa2Jd4xhl3Odk9Pq8Psnv9xjDhJdHx7Lo9tqQ5E9HmffpGf047syOcgek6ZxjtHlcl+ToXn+bMX63Y9K9jfxjvayLaZIAL+pxuX50nDF23kTyuHGOO9jRw8ok24+0vmbsY9fXd5RdnWZbOO0xZZLtzxNYl4e/ui4nr9FfHuEK9NuL0vQI9ck0J+u3pDl4ujfNCfVHkjyy1voHtd1LdKq1XpTmbqZPpTnxWDvajGqta2utL0iT9f+5JDemuavprnbef5nmhOfbXaZxZ5o7bv8oTQPKqjR3L12U5sTqUWlOXAbd1f3rd1drXZ/mIO1Nae4cujfNDv/qNL0WHV9r/dxk5jHVaq2/k6Zb5h+kWTZr0xwgfiLJo2qtU/Ic91rr+lrrb3fM6640y+fyNHeVnVBrvaaH6Wyotf5Bmu7C/ynNb3lHmt9xZZq7mj6Z5m7AfWutq0ee0qS+y8fS3P3yX2kautenqQvfSJOE+cJsvl4NN6l6tCXUWv86TcLLu9LcYbY8zcnIqjR323w+zd1h+9dar+4Y9Qdp7hx7V5o7XK5K8ztsSLNszk1T/46qtV6cLmqtF6Zp7Pyndjqr0/y25yZ5fq31pbXWUZdrrfU9ae60/1qGuuy+Ps3yPKHW+qUel8U30tzV84dp7kC6pZ3WmnZ630yTkHFkrfXjw0Y/Ns0jCs5Osy4uS7Ms7kqzTfibdrz/GGXeH0hzd/S30iQTbhil3EVpkpv+NU19XZ8moe78NHfPnlSbRxuN5u/S3Fn1/jR3jl3Xfr+17Xf8UppHCpxSa72jy3S6auvq6WmW2Yp2Hlcn+Zc0d+Re0GX0zulMdP2cErXWb6Y5+f9kmjuT16dZv7+X5lFLT0hz8XQq5rW01vqENImcH0+zvFal+b7L09yR9t40d+w9aSrm2SWWi5IcmSax81tp7rbu3Fb9e5o7z38wwrhXpWlUe0+aBOl1bfznJnlhrfWlaRo0xophMsvjj5K8NM024IIMHUesTtOb2H8mOa3W+vzadKs/fN43pbk79SPtfNeMEuO07ftrrXenOZl/Y/udRjquWdHDdFa1+6pHpmmQuDzNtntjmgt3F6X53s9Nc7fmeLyi4/9eH5U6qHM5vWLUUl3UWn+aZn0YrJN/lWbd6VtMY6m1Lkuz/7qy/ej0JJ/u9qgTAKbPVJ1nTFEsm2qtf5zmXOD9afbhd2fo/Ou8NL063O/RSz1Me9JtMNOp1npemgtSH0hzPrMuzfHqV9Mc472jx+lcmOYC/avSnMfdmOa8aG2aY//vpnlE3Am11rEeJddtPlNybjSKaTnu3ZJqrR9J8ug07YWD8d+aJjHh4bXWUR+52babvDBNr1Y/SVMnBtub/jLN8r1ytPE7pqN+tbbw+cKWdEea9ehP0yR6rExzXnBR+9lJtdalfYuuQ611Ra31iUmekSbRZHi7zNlp2hv+fth4d6X5jn+W5gLxmjTnhZenSQh5cK31+1MU481p2unenuaGn9Vpfv+fpLnY/dQMPS6v23T63s4xBe3fk2rvm2qTrKNT1iY4E7bd7bT62a790jTrxvlp1ocR27pmw/WEWdLm1JP2mO30NO2Zd6RZN29M8sUkT661/skUzmtajiV7jOU/03RS8c406+SKNMv9rjTXR/8xzU0bI437pTS9zn0uQ23AN6epz4/uVp+HTWcyy+OUNO2rn0vTQcBtaerj3e379yR5UK11xMdm1lq/mqad/ssZasMfqdwNadqt/y7NNmJtmmV0cZqbcB5Sa/1VL993LLXWy9Kcs/xtmm3M2jT7kO8meXGt9ZU9TufqNubnp7kpZkma/fL6NNeRfpjmOOBx7T6vJ6WUhRl6tPStaZJox2Ow3XSnNPuWcau1vj/NtjZpHhP8rTTHQH2LaSwjtT+XUt68JebF2Mo0XUcH2GaUUl6a5mQ5SQ7bEskXwMhKKWelSUi4rta6uL/RAAAAADBblFLOSNN7S5IcVGtd0r9oYOtXSlmS5MAk/15rPaO/0QAA2zo90AFMvRe1f5eluTMXAAAAAAAAAIAZSAIdwDiUUvYrpWzfZfjvpulmNUk+MV2PywQAAAAAAAAAYPzm9jsAgFnm1CT/WEr5dJLz0jwXfiDJIWme6/6cttztSf66D/EBAAAAAAAAANAjCXQA47coyRva10huTfL0Wuvt0xcSAAAAAAAAAADjVWbT0wUXLVpUFy9e3O8wgG3Yhg0bcscdd2TlypVZvXp1NmzYkI0bN2bu3LlZuHBhdtlll+y5556ZM2dOv0OFbdKSJUuyfPnyzJ8/P8cdd1y/wwEAgJ797Gc/W1Zr3bPfcWh/A2BbtWzZslx33XVJkmOPPTYLFizoc0Swdbv00kuzbt267LHHHnH8CQBMl9Ha4GZVD3SLFy/OhRde2O8wAAAAAGBKlVKu63cMifY3AAAAALZeo7XBDUx3IAAAAAAAAAAAADATSKADAAAAAAAAAABgmySBDgAAAAAAAAAAgG2SBDoAAAAAAAAAAAC2SRLoAAAAAAAAAAAA2CZJoAMAAAAAAAAAAGCbJIEOAAAAAAAAAACAbZIEOgAAAAAAAAAAALZJEugAAAAAAAAAAADYJkmgAwAAAAAAAAAAYJskgQ4AAAAAAAAAAIBtkgQ6AAAAAAAAAAAAtkkS6AAAAAAAAAAAANgmSaADAAAAAAAAAABgmySBDgAAAAAAAAAAgG2SBDoAAAAAAAAAAAC2SRLoAAAAAAAAAAAA2CZJoAMAAAAAAAAAAGCbJIEOAAAAAAAAAACAbZIEOgAAAAAAAAAAALZJEugAAAAAAAAAAADYJkmgAwAAAAAAAAAAYJskgQ4AAAAAAAAAAIBtkgQ6AAAAAAAAAAAAtkkS6AAAAABglimlfLSUsrSU8stRhpdSyr+UUq4upVxSSjl+umMEAAAAgNlAAh0AAAAAzD5nJTmty/CnJjmsfb0myQemISYAAAAAmHXm9jsAAAAAAGB8aq3fL6Us7lLkWUk+XmutSX5SStm1lLJvrfWW6YkQAAAAgOlUa83GTTUba82mTcmGTZuyaVOysdbN/t+4sSmzcVPNplqzYWPzd+Ommg2bao7Zb+csnDen319nWkmgAwAAAICtz/5Jbuh4f2P7mQQ6AAAAYMbrTAbbuKlN9mqTwkZKENu4aVM2bsp9ZTvHG0wU63y/2XTbJLJmuk0S2Yjlh5UZ/L+Z76Z2mrkvlk21ndamoeS0XuLYrMxgotuw8e+b7mbjT82y/95bTs6Be+wwNRObJSTQAQAAAMA2rJTymjSPec0DH/jAPkcDAAAAW5/aJlLdlyTVkVQ1UoLYpjYRa6wEsfsSucaa7gi9jA1PvhopQez+5QeTw+qICWKjJa51zm+0BLHhiW5TlQy2pcwdKBkYKJlTytD/g6/S8f9AyUBJ5g4MtGWSOQMDmVNy3/B58wYy0I4zd6Dc9/9I0xsYVqYzjs3GaT9rhiVz5gy0Zdr5DyQDpWRu5/9zmunuudOCfi/eaSeBbiu3+K1f3SLTXfI3p2+R6QIAAAAwJW5KckDH+we0n91PrfVDST6UJCeeeOIMb54GAACg30ZKvNq0qbckqYkmiN033VGStbr2GjauXsaGEsSGejvL/eY5auLasMdjDpavM/hsu5RsnnxVOpK0xkjMGiozmCCWzBsYuF+C2JzhSWH3SzBrpjVSgli3JLKRY71/gtjAQPMdBxPERp1uW6brMmiHsXWRQAcAAAAAW5+zk7yhlPLpJA9Pclet1eNbAQAAhumlF66eetEaIVmr81GOnQliwx//OGJvYF2StXp9/GP3BLHBODZlU82o87xf4tosSAYbM/mqS89dmydmJdvPnTvUg1eblNWUbRLE7ivfkQQ2UtLZZsMm2cvYwEA27zVsMEFsAtOVDAYNCXQAAAAAMMuUUj6V5OQki0opNyZ5R5J5SVJr/dckX0vytCRXJ7k3ySv7EykAADBdaq33JUINJnuN1TNX18c/dnkU4/2TtdoEsY1DvXWN/PjH7gliI/UyNvo8O2Ps6DWsdvRq1kOvZDPZQNuD17iTr4b3tNUmWS2YOzyBquOxkvdLEBu5F67NE7mGJY8N791rkr2MjZQgNtZ0S5EMBoyfBDoAAAAAmGVqrS8aY3hN8vvTFA4AAMw4967bkGV3r8uye9Zm3YZNYz7+cXiC2GCZoeSrzXsS6/q4yOG9l42jl7HRHn1536MkN6VNIhvWa1idPclgwxOzRkoQ65Yk1Yw3kIXzhpKvRk/M6kgKK2XosY6b9TLWY69hvSaIdZQZNUHsvkdE5r7ktpESxCSDAUwPCXQAAAAAAAAAzGi11qxauyHLVq3LslVrs+zutVm2am1uH/Z+cPi96zZu0XiGksDaHrw6k8N6SMzqLDN/7sDIj3+cMzTe5glmg/McO0Gs26Mqh8cxfJ4j9ho2UoLY8OmOkCAmGQyAmUwCHQAAAAAAAADTrtaalWs2dCTAtclw7ev2u9e1f5v3azdsut80Skl2235+Fu04P4t2XJCHHLBrFu24IHvutOC+zxbMHeipZ7NeHys5UCIZDAC2IhLoAAAAAAAAAJgStdbctXr9fQlwt2/WO9zazXuQu2dd1o2QFDdQkt13aBLg9txpQQ5atMN9yXCLdlyQRW1y3J47LsjuO8zP3DkDffimAMDWQgIdAAAAAAAAAKPatKnmjnvXbdZD3O0j9Bi37O51WX7P2qzfWO83jTkDJXvsMP++BLhD99oxe96XEDeUHLfnTguy2/bzM2dAD28AwPSQQAcAAAAAAACwjdm4qWbFPfdPgFu2am3Ta9yqdfc9OnXFPeuycdP9k+LmzSnZY4ehBLgj99m5fXTqUA9xi9r3u243LwOS4gCAGUgCHQAAAAAAAMBWZM36jTn/2hVZOvjo1LuHPT61TYobIScu8+cOtD3Dzc9+uyzMg/bfZbMe4ppe4pr3u2w3L6VIigMAZjcJdAAAAAAAAABbidXrNuYlH/5Jfn79nfd9tnDewH3Jbw/Ybfs89IG7bpYQt2jH+Vm0U/P41J0WzJUUBwBsUyTQAQAAAAAAAGwF1m/clNf/x89y0Q135m9+67g84uA9sminBdlh/hxJcQAAo5BABwAAAAAAADDLbdpU86efvyTfvfL2vOs5x+WFJz2w3yEBAMwKA/0OAAAAAAAAAICJq7XmXV+7PF/6xU35kycfnhc/XPIcAECvJNABAAAAAAAAzGIf/P41+fD/XJszHrU4v3/Kof0OBwBgVvEIVwAAAAAAAIBZaNOmmk9dcH3+5utX5JkP3i9//vSjU0rpd1gAALOKBDoAAAAAAACAWWLTppqfX39HvnrpLfnGL2/NLXetyeMO3zPvft6DMzAgeQ4AYLwk0AEAAAAAAADMYJs21Vx43R352qW35Ou/vCW3rVyb+XMH8vjD98yfnnZEnnbcvpk/d6DfYQIAzEoS6AAAAAAAAABmmI2bai5YsiJfa3uaW3p3kzR38uF75vQH7ZtTj9wrOy2c1+8wAQBmPQl0AAAAAAAAADPAxk01P712eZs0d1uWrVqbBXMHcsoRe+VpbdLcjgtc4gUAmEqOrgAAAAAAAAD6ZMPGTTn/2hX56qW35JuX3Zplq9Zl4byBnHrkXnnacfvmlCP2yg6S5gAAthhHWgAAAAAAAADT7CfXLM+XL7o537rs1iy/Z122mzcnpx61V04/bt+cfMSe2X6+S7kAANPBURcAAAAAAADANLnjnnX5sy//Mudccku2nz8nTzhq7zzt2H1y8hF7Zbv5c/odHgDANkcCHQAAAAAAAMA0+Pavbstbv3hp7lq9Lm9+0uF59eMOzsJ5kuYAAPpJAh0AAAAAAADAFrRyzfq88yu/yud/dmOO3Gen/PvvPCzH7LdLv8MCACAS6AAAAAAAAAC2mB9cdXv+9POXZOnda/OGUw7Nm55wWObPHeh3WAAAtCTQAQAAAAAAAEyxe9ZuyF9//fJ88ifX55A9d8gXXveoPOSAXfsdFgAAw0igAwAAAAAAAJhCFy5ZkT/+7MW54Y578+rHHpQ3P/mILJw3p99hAQAwAgl0AAAAAAAAAFPotZ/8eRbOG8hnf++Redji3fsdDgAAXQz0OwAAAAAAAACArcWqtRuybNXavPQRB0qeAwCYBSTQAQAAAAAAAEyRpSvXJEn23nlBnyMBAKAXEugAAAAAAAAApshtK9cmSfbeeWGfIwEAoBcS6AAAAAAAAACmyG339UAngQ4AYDaQQAcAAAAAAAAwRSTQAQDMLhLoAAAAAAAAAKbI8nvWZcHcgey4YG6/QwEAoAcS6AAAAAAAAACmyLoNm7JgrsuwAACzhSM3AAAAAAAAgCmycVPN3DkuwwIAzBaO3AAAAAAAAACmyIZNNXMGSr/DAACgRxLoAAAAAAAAAKbIxk2bMlcCHQDArCGBDgAAAAAAAGCK6IEOAGB2kUAHAAAAAAAAMAVqrbl22T3ZccHcfocCAECPJNABAAAAAAAATIGfXLMiv7j+zrz44Q/sdygAAPRIAh0AAAAAAADAFPiX71yVvXZakOefeEC/QwEAoEcS6AAAAAAAAAAm6fxrV+TH1yzPax9/SBbOm9PvcAAA6JEEOgAAAAAAAIBJes+5V2XRjgvyopM8vhUAYDaRQAcAAAAAAAAwQbXWnHfl0vzgqmX5vccdnO3m630OAGA2mdvvAAAAAAAAAABmk7UbNuan16zIuVcszXeuuC03rFidvXZakJc8Qu9zAACzjQQ6AAAAAAAAgDEsvXtNzrvi9nznitvyg6uW5d51G7Nw3kAec+iivO7xh+bJx+yd7ee7/AoAMNs4ggMAAAAAAAAYptaay25eme9cvjTnXnFbLr7xriTJfrsszG8dv3+ecOTeeeQhe2ThPI9sBQCYzSTQAQAAAAAAACS5d92G/M9Vy/LdK5fm3CuW5raVa1NK8tADds1bnnJETj1yrxy5z04ppfQ7VAAApogEOgAAAAAAAGCbdeMd9+bcK5bmO5cvzY+vWZ51GzZlpwVz87jD98ypR+6Vk4/YM3vsuKDfYQIAsIVIoAMAAAAAAAC2Kdfcviqf+9mNOffypbnytruTJAct2iEve8SBecKRe+XExbtn/tyBPkcJAMB0kEAHAAAAAAAAbFP+9POX5KIb7szDFu+et59+VE49cq8cvOeO/Q4LAIA+kEAHAAAAAAAAbDNqrbn8lpV5ycMfmL941rH9DgcAgD7T7zAAAAAAAACwzbjpztW5Z93GHL7PTv0OBQCAGUACHQAAAAAAALDN+PVtdydJjthbAh0AABLoAAAAAAAAgG3Ir29blSQ5TAIdAACRQAcAAAAAAABsI9Zv3JSLrr8z++y8MLtsN6/f4QAAMAPM7XcAAAAAAAAAAFvKHfesy/d+fXu+c8XSfO/KpVm5ZkOecsze/Q4LAIAZQgIdAAAAAAAAsNWotebqpavynSuW5tzLl+bC61ZkU00W7bggpx27T049cu88/vA9+x0mAAAzhAQ6AAAAAAAAYFZbu2Fjzr92Rb5z+dJ854rbcsOK1UmSY/bbOW845dCcetTeedD+u2RgoPQ5UgAAZhoJdAAAAAAAAMCss2zV2nz3iqX5zuVL84Orbs896zZmwdyBPObQRXnt4w/JqUfulX132a7fYQIAMMNJoAMAAAAAAABmvFprLr/l7nzn8tvynSuW5uIb70ytyT47L8yzHrp/nnDkXnnUIYuy3fw5/Q4VAIBZRAIdAAAAAAAAMKNs2lRz+6q1uenO1bnpjtX5yTXLc+4VS3PLXWuSJA8+YNf88RMPz6lH7ZWj9905pXg0KwAAEyOBDgAAAAAAAJg2tdasXLMhN9+5OrfctTo33bkmt9y5OjffuTo337UmN9+5OretXJP1G+t94+wwf04ee9ie+aMn7ZVTjtgre+60oI/fAACArYkEOgAAAAAAAGDKrFm/MbfetSY337U6Nw8mx7X/39wmyt2zbuNm48wdKNlnl4XZb9ftcuKBu2W/XbfLvrtul/13XZh9d9kuB++5QxbM9WhWAACmngQ6AAAAAAAAoCeDj1ZtEuHahLi7Vre9yTXvl61ad7/xFu04P/vtul0O2XPHPOawRdl/1+2y7y7bZb9dm6S5RTsuyJwBj2EFAGD6SaADAAAAAAAAJvRo1aR5vOp+u26X/XbdLsfst3P226XpPW6/XRdmv122yz67LMzCeXqPAwBgZpJABwAAAAAAANuAsR6testda7Jq7YbNxhnr0ar77bpddl44N6XoPQ4AgNlJAh0AAAAAAABsJTZs3JTzl6zIr25emZvuXJ1b7lxz3yNWuz1a9eA9d8hjDluU/dqkOI9WBQBgWyGBDgAAAAAAAGaxNes35odXL8s3fnlrvn35bbnj3vVJhh6tuq9HqwIAwKgk0AEAAAAAAMAss2rthpx35dJ845e35rtXLM096zZmp4Vz88Sj9s5Tjtknjzh49+yy3TyPVgUAgDFIoAMAAAAAAIBZ4I571uXbl9+Wb152a75/1bKs27Api3acn2c+ZP+cduw+eeTBe2T+3IF+hwkAALOKBDoAAAAAAACYoW5buSbfuuzWfOOyW/OTa1Zk46aa/XfdLi99+IE57dh9csKBu2XOgF7mAABgoiTQAQAAAAAAwAxy/fJ7843Lbsk3fnlrfn79nUmSg/fcIa99/ME57Zh9c+z+O3s0KwAATBEJdAAAAAAAANBna9ZvzIe+f02+/stbc/ktK5Mkx+y3c978pMPz1OP2yaF77dTnCAEAYOskgQ4AAAAAAAD67GM/XJJ/+O9f58QDd8vbTz8qTzlmnxyw+/b9DgsAALZ6EugAAAAAAACgz86/dnkO3WvHfP51j+p3KAAAsE0Z6HcAAAAAAAAAsC3btKnmZ9fdkRMP3K3foQAAwDZHAh0AAAAAAAD00dW3r8rKNRtyggQ6AACYdhLoAAAAAAAAoI8uWLIiSfKwxbv3ORIAANj2SKADAAAAAACAPvrZkjuyaMf5OXCP7fsdCgAAbHMk0AEAAAAAAECf3HTn6nzrV7flUYcsSiml3+EAAMA2RwIdAAAAAAAA9EGtNW/9wiXZVGve8pQj+h0OAABskyTQAQAAAAAAQB989sIb8oOrluVtTz0yB+zu8a0AANAPEugAAAAAAABgmt1y1+r85TmX5xEH756XPPzAfocDAADbLAl0AAAAAAAAMI1qrXnbFy/Nhk01f/vbD87AQOl3SAAAsM2SQAcAAAAAAADT6PM/uzHnXXl7/tdpR+SBe3h0KwAA9FNPCXSllNNKKVeWUq4upbx1hOELSimfaYf/tJSyuP38SaWUn5VSLm3/ntoxzgnt51eXUv6llOLWGgAAAAAAALZqd61en3d97fI8bPFuefkjF/c7HAAA2OaNmUBXSpmT5H1Jnprk6CQvKqUcPazYq5LcUWs9NMk/Jvl/7efLkjyj1npcklck+UTHOB9I8uokh7Wv0ybxPQAAAAAAAGDGe993r86dq9fnzGce49GtAAAwA/TSA91JSa6utV5Ta12X5NNJnjWszLOS/Hv7/+eTPKGUUmqtv6i13tx+flmS7dre6vZNsnOt9Se11prk40mePdkvAwAAAAAAADPVdcvvyVk/XJLnnfCAHLPfLv0OBwAASG8JdPsnuaHj/Y3tZyOWqbVuSHJXkj2GlfntJD+vta5ty984xjSTJKWU15RSLiylXHj77bf3EC4AAAAAAADMPP/vG1dk7pySNz/5iH6HAgAAtHpJoJu0UsoxaR7r+nvjHbfW+qFa64m11hP33HPPqQ8OAAAAAAAAtrALlqzI1y69Na99/CHZe+eF/Q4HAABo9ZJAd1OSAzreP6D9bMQypZS5SXZJsrx9/4AkX0ry8lrrbzrKP2CMaQIAAAAAAMCsd++6Dfm/5/wq++y8MK9+7MH9DgcAAOjQSwLdBUkOK6UcVEqZn+SFSc4eVubsJK9o/39uknNrrbWUsmuSryZ5a631h4OFa623JFlZSnlEKaUkeXmSL0/uqwAAAAAAAMDMsXFTzWcvvCGnvPu8XHLjXXnb047MdvPn9DssAACgw9yxCtRaN5RS3pDkm0nmJPlorfWyUso7k1xYaz07yUeSfKKUcnWSFWmS7JLkDUkOTfLnpZQ/bz97cq11aZLXJzkryXZJvt6+AAAAAAAAYNb7/q9vz7u+dnmuuPXuPPiAXfPeFx+fhy3evd9hAQAAw4yZQJcktdavJfnasM/+vOP/NUmeN8J4f5nkL0eZ5oVJjh1PsAAAAAAAADCTXX7Lyvz116/I9399ew7Yfbu850UPzdMftG+ahzIBAAAzTU8JdAAAAAAAAMDoblu5Jn//rSvzuZ/dmJ0WzM3bTz8qL3vkgVkw1yNbAQBgJpNABwAAAAAAABN0z9oN+eD3r8m/ff+abNi0Ka969EF5w6mHZtft5/c7NAAAoAcS6AAAAAAAAGACzrnk5px59q+ybNXanP6gffOnTzkiB+6xQ7/DAgAAxkECHQAAAAAAAIxTrTV/+vlL8sDdt88HX3ZCTjhwt36HBAAATMBAvwMAAAAAAACA2WbV2g25d93G/Nbx+0ueAwCAWUwCHQAAAAAAAIzT8lXrkiR77LCgz5EAAACTIYEOAAAAAAAAxmn5PWuTJHvsOL/PkQAAAJMhgQ4AAAAAAADGaZke6AAAYKsggQ4AAAAAAADG6YYV9ybRAx0AAMx2c/sdAAAAAAAAAMwGtdb8+DfL86/fvybf//Xt2X/X7bJoRz3QAQDAbCaBDgAAAAAAALrYuKnmG7+8NR/8/m9yyY13ZdGOC/KWpxyRlz78wMyf64FPAAAwm0mgAwAAAAAAgBGsWb8xn/vZjfnwD67JdcvvzUGLdsi7nnNcfuv4/bNw3px+hwcAAEwBCXQAAAAAAADQ4c571+UTP74uZ/1oSZbfsy4PPmDXvO2pR+ZJR++TOQOl3+EBAABTSAIdAAAAAAAAJLnpztX5yA+uzacvuD73rtuYU47YM699/CE56aDdU4rEOQAA2BpJoAMAAAAAAGCbdtfq9Tnz7Mty9sU3pyR55kP2y2sed3CO3GfnfocGAABsYRLoAAAAAAAA2Kad9cMl+a+LbsrvPPqgvOoxB2W/Xbfrd0gAAMA0kUAHAAAAAADANu38Jctz9L4758+efnS/QwEAAKbZQL8DAAAAAAAAgH5Zt2FTfnbdHXnY4t37HQoAANAHEugAAAAAYBYqpZxWSrmylHJ1KeWtIwx/YCnlu6WUX5RSLimlPK0fcQLATPfLm+/KmvWb8vCDJNABAMC2SAIdAAAAAMwypZQ5Sd6X5KlJjk7yolLK8GfOvT3JZ2utD03ywiTvn94oAWB2OP/aFUmSE/VABwAA26S5/Q4AAAAAABi3k5JcXWu9JklKKZ9O8qwkv+ooU5Ps3P6/S5KbpzVCAJhhaq1ZtXZDVtyzLsvvWZcVq9ZlxT3rcs4lN+fgPXfInjst6HeIAABAH0igAwAAAIDZZ/8kN3S8vzHJw4eVOTPJt0opb0yyQ5InjjShUsprkrwmSR74wAdOeaAAsKVs2lSzcs36JhnunnVZ3ibErbhn7X2fbf75uqzbuGnEaf3+KYdMc/QAAMBMIYEOAAAAALZOL0pyVq3170spj0zyiVLKsbXWzTIHaq0fSvKhJDnxxBNrH+IEgCTJxk01d9w7ejJcZ69xy+9ZlzvuXZeNm0bede24YG5232F+dt9hfvbdZWGO2W/n7L7j/Oyxw/zsvsOC9m/z2mPH+dl+vktmAACwrXI2AAAAAACzz01JDuh4/4D2s06vSnJaktRaf1xKWZhkUZKl0xIhANu8dRs25Y57h5Lhlt+zdqhXuM2S4ZrP71y9PnWUVO5dtpt3X9LbgXtsn+MP3LVNgLt/MtzuO8zPgrlzpvfLAgAAs5YEOgAAAACYfS5Iclgp5aA0iXMvTPLiYWWuT/KEJGeVUo5KsjDJ7dMaJQBblTXrN96X+DZSMtzytse4wc/uXrNhxOkMlGS37YeS3o7YZ6f7JcPtscP87N4mw+22/fzMmzMwzd8WAADYVkigAwAAAIBZpta6oZTyhiTfTDInyUdrrZeVUt6Z5MJa69lJ3pzk30opf5SkJjmj1tH69QFgW1NrzT3rNm6WDDf4qNShR6hu/vm96zaOOK25A2WzHuCO223XzXuF26x3uAXZdbt5GRgo0/yNAQAARiaBDgAAAABmoVrr15J8bdhnf97x/6+SPHq64wJg5lizfmO+cvHNufyWu7PinrWbJ8jdsy7rNmwacbwFcwc6eoBbkIP33HHUZLjdd5ifnRfOTSkS4gAAgNlJAh0AAAAAAMBWZOnKNfnET67Lf/z0+qy4Z122nz/nvoS3vXdemKP23XnzHuJ23PzxqdvPnyMhDgAA2GZIoAMAAAAAANgKXHrjXfnoD6/NOZfcnA2bap5w5N551WMOyiMO3l1CHAAAwCgk0AEAAAAAAMxSGzfV/Pevbs1H/2dJzl+yIjvMn5OXPPzAnPGoxVm8aId+hwcAADDjSaADAAAAAACYZVauWZ/PXnBDzvrRktx4x+o8YLft8vbTj8rzH3ZAdl44r9/hAQAAzBoS6AAAAAAAAGaJJcvuyVk/WpLPXXhD7lm3MSct3j1vP/2oPOnofTJnwGNaAQAAxksCHQAAAAAAwAz369vuzt9+48p854rbMneg5BkP2i+vfPRBOe4Bu/Q7NAAAgFlNAh0AAAAAAMAMVWvNZy64Ie84+7JsN39O3njKoXnpIw7MXjsv7HdoAAAAWwUJdAAAAAAAADPQqrUb8n++dGm+fNHNefShe+QfX/CQ7LWTxDkAAICpJIEOAAAAAABghrns5rvyxv/8RZYsvydvftLhef0ph2bOQOl3WAAAAFsdCXQAAAAAAAAzRK01n/zp9fm/5/wqu20/L//56kfkEQfv0e+wAAAAtloS6AAAAAAAAGaAlWvW521fvDRfveSWPP7wPfMPz39w9thxQb/DAgAA2KpJoAMAAAAAAOizH/9mef7XFy7JTXeuzv867cj83uMOzoBHtgIAAGxxEugAAAAAAAD65BfX35G//9av8z9XL8v+u26Xz7zmETlx8e79DgsAAGCbIYEOAAAAAABgmv3q5pX5h/++Mt++fGn22GF+3n76UXnpIw7Mwnlz+h0aAADANkUCHQAAAAAAwDS5eumq/OO3f52vXnJLdlo4N3/y5MPzykcflB0WuGQDAADQD87GAAAAAAAAtrAbVtybf/r2VfnSL27Mwnlz8oZTDs2rH3twdtl+Xr9DAwAA2KZJoAMAAAAAANhCbr1rTd5z7lX5zAU3ZGCg5HcefVBee/IhWbTjgn6HBgAAQCTQAQAAAAAATLnlq9bmA+f9Jp/4yXXZuKnmBQ87IG889bDss8vCfocGAABABwl0AAAAAAAAU2TlmvX58A+uzUd+cE1Wr9+Y5zz0AfnDJx6WA3bfvt+hAQAAMAIJdAAAAAAAAJO0et3GfPzHS/KB7/0md967Pk87bp/88ZMOz6F77dTv0AAAAOhCAh0AAAAAAMAErduwKZ+58Ia85ztXZenda/P4w/fMnzz5iBz3gF36HRoAAAA9kEAHAAAAAAAwThs31Xz5opvyj9/+dW5YsToPW7xb3vOih+bhB+/R79AAAAAYBwl0AAAAAAAAPaq15puX3Za//9aVuWrpqhyz38752CuPzcmH75lSSr/DAwAAYJwk0AEAAAAAAPTgwiUr8s5zfpVLbrwrB++5Q9734uPz1GP3ycCAxDkAAIDZSgIdAAAAAABAF/eu25C/++aVOetHS7Lvzgvzt899UH7roftn7pyBfocGAADAJEmgAwAAAAAAGMVPrlme//WFS3Ld8nvz8kcemD897cjsuMDlFQAAgK2FMzwAAAAAAIBh7lm7If/vG1fk4z++Lg/cfft86tWPyCMP2aPfYQEAADDFJNABAAAAAAB0+OHVy/K/vnBJbrpzdV756MV5y1OOyPbzXVIBAADYGjnbAwAAAAAASHL3mvV519euyKfOvz4HLdohn/u9R+bExbv3OywAAAC2IAl0AAAAAADANu/cK27L27/0y9y6ck1e87iD88dPOjwL583pd1gAAABsYRLoAAAAAACAbdZ1y+/JO7/yq3zniqU5dK8d84XXPSoPfeBu/Q4LAACAaSKBDgAAAAAA2OasXrcx7z/v6nzwe9dk3pyS//O0o/KKRy3O/LkD/Q4NAACAaSSBDgAAAAAA2GbUWvONX96av/zq5bnpztV5zkP3z1ufemT23nlhv0MDAACgDyTQAQAAAAAA24Srl96dM8/+Vf7n6mU5cp+d8tnfe2ROOmj3focFAABAH0mgAwAAAAAAtmp3r1mff/nOVfnYD5dk+/lz8s5nHZMXn/TAzJ3jca0AAADbOgl0AAAAAADAVuun1yzPGz/1i9y+am1ecOIBectTjsgeOy7od1gAAADMEBLoAAAAAACArdZ7v3t1BkrJl17/6DzkgF37HQ4AAAAzjL7JAQAAAACArdYVt96dRx+6SPIcAAAAI5JABwAAAAAAbJVW3LMut9+9Nkfus1O/QwEAAGCGkkAHAAAAAABsla64dWWS5AgJdAAAAIxCAh0AAAAAALBVuvLWu5NED3QAAACMSgIdAAAAAACwVbr0xruy2/bzsudOC/odCgAAADOUBDoAAAAAAGCrUmvN+757db74i5ty6pF7p5TS75AAAACYoeb2OwAAAAAAAICpsmlTzTvP+VXO+tGSPPPB++Wvf+u4focEAADADCaBDgAAAAAA2Cqs27Apb/7cxfnKxTfndx59UN5++lEZGND7HAAAAKOTQAcAAAAAAMx6q9ZuyGs/8bP8z9XL8tanHpnfe9zBHt0KAADAmCTQAQAAAAAAs9qyVWvzyo9dkF/dsjLvft6D89wTHtDvkAAAAJglJNABAAAAAACzUq01P75mef73Fy/NrSvX5N9efkJOPXLvfocFAADALCKBDgAAAAAAmFU2bar5zhVL877vXp2Lbrgze++8IP/56kfk+Afu1u/QAAAAmGUk0AEAAAAAALPCho2bcs4lt+T9512dX9+2Kgfsvl3+6jnH5rePf0AWzpvT7/AAAACYhSTQAQAAAAAAM9qa9Rvz+Z/dmA9+/ze5YcXqHLH3TvnnFz4kpx+3b+bOGeh3eAAAAMxiEugAAAAAAIAZadXaDfmPn1yXD//Ptbn97rV5yAG75s+ffkyecOReGRgo/Q4PAACArYAEOgAAAAAAYEZZcc+6nPXDa3PWj5Zk5ZoNeexhi/LPL3xIHnnwHilF4hwAAABTRwIdAAAAAADQd5s21fzihjvy5YtuzucuvDGr12/MU47ZO68/+dA8+IBd+x0eAAAAWykJdAAAAAAAQF/UWnPxjXflnItvztcuvSU337Um8+cO5OkP2jeve/whOWzvnfodIgAAAFs5CXQAAAAAAMC0qbXmsptX5pxLbslXL705N6xYnXlzSh532J55y2lH5IlH7Z2dFs7rd5gAAABsIyTQAQAAAAAAW1StNVfednfOufiWnHPJzVmy/N7MHSh59KGL8qZTD8uTj9knu2wnaQ4AAIDpJ4EOAAAAAADYIq5eene+cvEt+eqlt+TqpasyUJJHHbIov/f4Q3LaMftktx3m9ztEAAAAtnES6AAAAAAAgClz7bJ78tVLbs45l9ySK269O6UkJy3ePa949rF56rH7ZNGOC/odIgAAANxHAh0AAAAAADBpP7vujvz5l3+Zy25emSQ58cDdcuYzjs7Tjts3e+28sM/RAQAAwMgk0AEAAAAAAJP2d9+8IretXJu3n35Unnbcvtlv1+36HRIAAACMSQIdAAAAAAAwKXfcsy4XLLkjr3v8Ifndxx7c73AAAACgZwP9DgAAAAAAAJjdzr1iaTZuqnnS0Xv3OxQAAAAYFwl0AAAAAADApPz3r27LPjsvzHH779LvUAAAAGBcJNABAAAAAAATtmb9xnzv17fnSUfvnYGB0u9wAAAAYFwk0AEAAAAAABN27hVLs3r9xjz5GI9vBQAAYPaRQAcAAAAAAEzIZTfflbd+4ZIcvGiHPPygPfodDgAAAIybBDoAAAAAAGDcrl66Ki//yPnZccHcfPxVJ2X+XJccAAAAmH2czQIAAAAAAONyw4p789IP/zSllHzydx+eB+y2fb9DAgAAgAmRQAcAAAAAAPTstpVr8pIP/zSr12/MJ151Ug7ec8d+hwQAAAATJoEOAAAAAADoyYp71uWlH/5plq9am7Ne+bActe/O/Q4JAAAAJmVuvwMAAAAAAABmvrUbNuYVHz0/16+4N2e98qQ89IG79TskAAAAmDQJdAAAAAAAwJg+e+GNufSmu/KBlxyfRx6yR7/DAQAAgCnhEa4AAAAAAEBX6zZsyge+e3WOf+CuOe3YffodDgAAAEwZCXQAAAAAAEBXX/z5jbn5rjV50xMOSyml3+EAAADAlJFABwAAAAAAjGr9xk1533lX50EP2CWPP3zPfocDAAAAU0oCHQAAAAAAMKovX3RzblixOm86Ve9zAAAAbH0k0AEAAAAAACO66971ee+5V+XofXfOE47aq9/hAAAAwJSTQAcAAAAAANzPdcvvyXM+8MPcdOfqvO1pR+p9DgAAgK3S3H4HAAAAAAAAzCw/vWZ5XvvJn6Um+eSrHp6HH7xHv0MCAACALUICHQAAAAAAcJ/P/+zGvO2Ll+SA3bfPR1/xsCxetEO/QwIAAIAtRgIdAAAAAACQTZtq3v2tK/P+836TRx+6R97/4hOyy/bz+h0WAAAAbFES6AAAAAAAYBu3et3G/NFnLso3Lrs1L374A/MXzzwm8+YM9DssAAAA2OIk0AEAAAAAwDbs1rvW5NUfvzC/vPmuvP30o/KqxxyUUkq/wwIAAIBpIYEOAAAAAAC2URffcGde/fELc8/aDfm3l52YJx69d79DAgAAgGklgQ4AAAAAALZBZ198c97yuYuz504L8vFXPSpH7rNzv0MCAACAaSeBDgAAAAAAtiGbNtX847d/nfece3VOWrx7PvDS47PHjgv6HRYAAAD0hQQ6AAAAAADYRty7bkP++DMX5xuX3Zrnn/iA/OWzj8v8uQP9DgsAAAD6RgIdAAAAAABsA26+c3V+998vzBW3rszbTz8qr3rMQSml9DssAAAA6CsJdAAAAAAAsBXbtKnma7+8JWee/ausXb8xHznjYTnliL36HRYAAADMCBLoAAAAAABgK1RrzXm/vj3v/uaVuezmlTlyn53ynhc9NIftvVO/QwMAAIAZQwIdAAAAAABsZc6/dkX+7ptX5IIld+SA3bfLP77gwXnmg/fPnAGPbAUAAIBOEugAAAAAAGAr8cub7sq7v3Vlzrvy9uy104L832cfmxeceEDmzx3od2gAAAAwI0mgAwAAAACAWe6a21fl7//71/nqJbdkl+3m5a1PPTKveOTibDd/Tr9DAwAAgBlNAh0AAAAAAMxSN9+5Ov/87avy+Z/fmAVzB/LGUw/N7z724Oyy3bx+hwYAAACzggQ6AAAAAACYhf7t+9fk7755ZZLk5Y88MK8/+dDsudOCPkcFAAAAs4sEOgAAAAAAmGX+56pl+auvXZ4nHrVXznzmMXnAbtv3OyQAAACYlQZ6KVRKOa2UcmUp5epSyltHGL6glPKZdvhPSymL28/3KKV8t5SyqpTy3mHjnNdO86L2tdeUfCMAAAAAANiKLV+1Nn/02Yty6F475j0vOl7yHAAAAEzCmD3QlVLmJHlfkicluTHJBaWUs2utv+oo9qokd9RaDy2lvDDJ/0vygiRrkvxZkmPb13AvqbVeOMnvAAAAAAAA24Raa/7085fkrnvX599feVK2mz+n3yEBAADArNZLD3QnJbm61npNrXVdkk8nedawMs9K8u/t/59P8oRSSqm13lNr/Z80iXQAAAAAAMAkfPzH1+U7VyzN2552ZI7eb+d+hwMAAACzXi8JdPsnuaHj/Y3tZyOWqbVuSHJXkj16mPbH2se3/lkppYxUoJTymlLKhaWUC2+//fYeJgkAAAAAAFufK25dmb/62uU55Yg9c8ajFvc7HAAAANgq9JJAt6W8pNZ6XJLHtq+XjVSo1vqhWuuJtdYT99xzz2kNEAAAAAAAZoINGzflDz51UXZeOC9/97wHZ5R70gEAAIBx6iWB7qYkB3S8f0D72YhlSilzk+ySZHm3idZab2r/3p3kP9M8KhYAAAAAABjm/CUrcuVtd+fPnn5UFu24oN/hAAAAwFajlwS6C5IcVko5qJQyP8kLk5w9rMzZSV7R/v/cJOfWWutoEyylzC2lLGr/n5fk6Ul+Od7gAQAAAABgW/D1S2/NwnkDedLRe/c7FAAAANiqzB2rQK11QynlDUm+mWROko/WWi8rpbwzyYW11rOTfCTJJ0opVydZkSbJLklSSlmSZOck80spz07y5CTXJflmmzw3J8m3k/zbVH4xAAAAAADYGmzaVPONy27NKUfsle3nj9msDwAAAIxDT2fatdavJfnasM/+vOP/NUmeN8q4i0eZ7Am9hQgAAAAAANuun11/R26/e21OO3affocCAAAAW51eHuEKAAAAAAD0ydcvvTXz5w7k1CP36ncoAAAAsNWRQAcAAAAAADPUxk013/jlLXncYXtmp4Xz+h0OAAAAbHUk0AEAAAAAwAx1ziU35+a71uS3j9+/36EAAADAVkkCHQAAAAAAzEAbNm7KP3/7qhy5z055yjH79DscAAAA2CpJoAMAAAAAgBno7ItvzjXL7skfPvGwDAyUfocDAAAAWyUJdAAAAAAwC5VSTiulXFlKubqU8tZRyjy/lPKrUsplpZT/nO4YgYnbsHFT/uU7V+WofXfOk4/W+xwAAABsKXP7HQAAAAAAMD6llDlJ3pfkSUluTHJBKeXsWuuvOsocluRtSR5da72jlLJXf6IFJuJLv7gpS5bfmw++7AS9zwEAAMAWpAc6AAAAAJh9Tkpyda31mlrruiSfTvKsYWVeneR9tdY7kqTWunSaYwQm6Prl9+afvn1Vjtlv5zz56L37HQ4AAABs1STQAQAAAMDss3+SGzre39h+1unwJIeXUn5YSvlJKeW0kSZUSnlNKeXCUsqFt99++xYKF+hFrTVf+NmNedq//CArV6/PO55xTErR+xwAAABsSR7hCgAAAABbp7lJDktycpIHJPl+KeW4WuudnYVqrR9K8qEkOfHEE+s0xwi07rp3ff73f12ar15yS05avHv+4QUPzgN2277fYQEAAMBWTwIdAAAAAMw+NyU5oOP9A9rPOt2Y5Ke11vVJri2l/DpNQt0F0xMi0Ksf/WZZ3vzZi3P73Wvzlqcckdc+/pDMGdDzHAAAAEwHj3AFAAAAgNnngiSHlVIOKqXMT/LCJGcPK/NfaXqfSyllUZpHul4zjTECY1i3YVP++uuX5yUf/mm2mzcnX3z9o/L7pxwqeQ4AAACmkR7oAAAAAGCWqbVuKKW8Ick3k8xJ8tFa62WllHcmubDWenY77MmllF8l2ZjkLbXW5f2LGuh09dK78wefviiX3bwyLzrpgfmzpx+V7edrsgcAAIDp5mwcAAAAAGahWuvXknxt2Gd/3vF/TfLH7QuYQX549bK86t8vyHbz5uRDLzshTz5mn36HBAAAANssCXQAAAAAADCN/vnbV2XRjgvyxdc9KnvtvLDf4QAAAMA2baDfAQAAAAAAwLbiqtvuzvlLVuRljzhQ8hwAAADMABLoAAAAAABgmvzHT6/P/DkDee4JD+h3KAAAAEAk0AEAAAAAwLRYvW5jvvDzG3Pasftkjx0X9DscAAAAIBLoAAAAAABgWpxzyc25e82GvOThD+x3KAAAAEBLAh0AAAAAAGxhq9dtzEd/uCSH7rVjTjpo936HAwAAALQk0AEAAAAAwBZ0z9oNeeVZ5+eKW1fmzU86PKWUfocEAAAAtOb2OwAAAAAAANharVq7Ia/82Pn52XV35J9e8JA89bh9+x0SAAAA0EECHQAAAAAAbAEr16zPGR89PxffeFfe86Ljc/qDJM8BAADATCOBDgAAAAAApthd967Pyz92fi676a6878UPzWnHSp4DAACAmUgCHQAAAAAATKE77lmXl330p/n1ravyry89IU88eu9+hwQAAACMQgIdAAAAAABMkVprzvjY+fn1bavywZefkFOO2KvfIQEAAABdDPQ7AAAAAAAA2Frcee/6XHzjXfmDJxwmeQ4AAABmAQl0AAAAAAAwRZatWpskOWD37fscCQAAANALCXQAAAAAADBFbm8T6BbtOL/PkQAAAAC9kEAHAAAAAABT5Pa7mwS6vXZa0OdIAAAAgF5IoAMAAAAAgCmybNW6JMmiHSXQAQAAwGwggQ4AAAAAAKbIDSvuzbw5JbtsN6/foQAAAAA9kEAHAAAAAABT4PJbVuY/f3p9nnDk3iml9DscAAAAoAcS6AAAAAAAYJLWrN+YN33qF9ll+3n5q+cc2+9wAAAAgB7N7XcAAAAAAAAw2/3VVy/PVUtX5ROvOil77Lig3+EAAAAAPdIDHQAAAAAATMJ//+q2fOIn1+XVjz0ojz1sz36HAwAAAIyDHuhmiMVv/Wq/Q2ACZtvvtuRvTu93CAAAAACwVblt5Zr86ecvztH77pw/ecoR/Q4HAAAAGCc90AEAAAAAwAS9/b9+mdXrN+ZfXvTQLJg7p9/hAAAAAOMkgQ4AAAAAACag1pof/2Z5nnvCA3LoXjv2OxwAAABgAiTQAQAAAADABKy4Z11Wrd2QgxZJngMAAIDZSgIdAAAAAABMwHUr7k2SHLj79n2OBAAAAJgoCXQAAAAAADAB1y9vE+j2kEAHAAAAs5UEOgAAAAAAmIDr2gS6A/RABwAAALOWBDoAAAAAAJiA61bck312XpiF8+b0OxQAAABggiTQAQAAAADABFy77J4sXvT/27vzOL3q+m74n9/MZCELWwhhCRAIgQAuiBRxX7AKxUfq7VJ8aksVpbZq26e1d2l717uPbZ8bu3m3T7XVqoVaFa3VSgXFvVatQFjKFgIxBAhL9n2fmd/9Ry40xoTMJDNz5rqu9/v1ymuu65xzHT8Tfp5kvq9PznH3OQAAAGhnCnQAAAAAADBMtdb8YMWmnHr0tKajAAAAAAdBgQ4AAAAAAIZp5abt2bCtP3NnKtABAABAO1OgAwAAAACAYfrBis1J4g50AAAA0OYU6AAAAAAAYJh+sHJTkrgDHQAAALQ5BToAAAAAABimxSs2ZcrE3hxz6OSmowAAAAAHQYEOAAAAAACG6b4nNmTerOnp6SlNRwEAAAAOggIdAAAAAAAMQ6019z62IWcdd2jTUQAAAICDpEAHAAAAAADDsGzt1mzY1q9ABwAAAB1AgQ4AAAAAAIbhnsc2JEnOPFaBDgAAANqdAh0AAAAAAAzDvY+tT09J5h+jQAcAAADtToEOAAAAAACG4a5H12fuzGk5ZGJv01EAAACAg6RABwAAAAAAQ7Ruy458d/HqPP/Uo5qOAgAAAIwABToAAAAAABiiL975eHYMDOZ1z57ddBQAAABgBCjQAQAAAADAEP3Lbcty2qxpOeu4Q5uOAgAAAIwABToAAAAAABiCJSs35faH1+W158xOKaXpOAAAAMAIUKADAAAAAIAh+Nxtj6anJK951vFNRwEAAABGiAIdAAAAAADsx80Prsm1tzycF86bmaMPndx0HAAAAGCE9DUdAAAAAAAAxqs1m3fkqi8tzGcWLMvxhx+Sd7/i9KYjAQAAACNIgQ4AAAAAAPZQa81nb12W/++Ghdm4rT9vf/Hc/NoFp2bKRGN1AAAA6CR+0gcAAAAAgN08sHxjfv9f787ND67Js086In/ymqdl/jGHNh0LAAAAGAUKdAAAAAAAkGTrjoH8zTcfyIe/vSRTJvblqv/29Lzh3BPS01OajgYAAACMEgU6AAAAAAC63rcWrcgffOHuPLJma157zuz83s/Mz4xpk5qOBQAAAIwyBToAAAAAALraR/5jSf74+oU5ZebUfOpt5+e5c2c0HQkAAAAYIwp0AAAAAAB0ta8vXJH5x0zPF975/Ezq6206DgAAADCGepoOAAAAAAAATXp4zZacceyhynMAAADQhRToAAAAAADoWtt2DuSx9Vtz0owpTUcBAAAAGqBABwAAAABA11q2dktqTebMmNp0FAAAAKABCnQAAAAAAHSth1ZvSRJ3oAMAAIAupUAHAAAAAEDXenDV5iTJSe5ABwAAAF1JgQ4AAAAAgK71wPJNOXLqxBwxZULTUQAAAIAGKNABAAAAANC17lu+MafPmp5SStNRAAAAgAYo0AEAAAAA0JUGB2seWL4xpx8zvekoAAAAQEMU6AAAAAAA6EqPrN2SLTsGcsaxCnQAAADQrRToAAAAAADoSvc9sTFJcvoxhzacBAAAAGiKAh0AAAAAAF1nR/9grrvjsZSSnDZrWtNxAAAAgIb0NR0AdjfnyutH5bxLr7p4VM4LAAAAALSfx9dvza9+4rbc/vC6/NoF8zJlolE5AAAAdCtTAQAAAAAAusb3Fq/Kuz51e7btHMgHf/6c/MzTj206EgAAANAgBToAAAAAADperTUf+vaS/OmX78spM6fl79707Jx6tEe3AgAAQLdToAMAAAAAoKNt2LYzv/3P/5Ub71mei59xbP70tc/I1EnG4wAAAIACHQAAAAAAHWzRExvz9n+6NQ+v2ZI/eNWZecvz56SU0nQsAAAAYJxQoAMAAAAAoCM9smZLXvPB72bqpL586m3n57yTj2w6EgAAADDOKNABAAAAANCRvrZwebbsGMi/vesFmTtzWtNxAAAAgHGop+kAAAAAAAAwGr67eHVOmjFFeQ4AAADYJwU6AAAAAAA6Tv/AYG5asjrPmzuj6SgAAADAOKZABwAAAABAx7nr0fXZuL0/z5t7VNNRAAAAgHFMgQ4AAAAAgI7zvR+sThJ3oAMAAACekgIdAAAAAAAd53s/WJX5x0zPjGmTmo4CAAAAjGMKdAAAAAAAdJQd/YO59aG1ea67zwEAAAD7oUAHAAAAAEBHuevR9dm2czDPOfnIpqMAAAAA45wCHQAAAAAAHeWWpWuSJOfOUaADAAAAnpoCHQAAAAAAHeXmB9dk7sypOWrapKajAAAAAOOcAh0AAAAAAB1jYLDmlqVrct7JM5qOAgAAALQBBToAAAAAADrGfy1bl43b+nPeyUc0HQUAAABoAwp0AAAAAAB0jA98Y3EOO2RCLjhjVtNRAAAAgDagQAcAAAAAQEe47eG1+fp9K3LFi07JoZMnNB0HAAAAaAMKdAAAAAAAdIT3f/X+zJg6Mb/0vDlNRwEAAADahAIdAAAAAABt7/tLVuc/HliVX3nJ3Eyd1Nd0HAAAAKBNKNABAAAAANDWaq35y6/cn6OnT8qbzj+p6TgAAABAG1GgAwAAAACgrd328LrcvHRN3vmyUzN5Qm/TcQAAAIA2okAHAAAAAEBb+8GKTUmSl55+dMNJAAAAgHajQAcAAAAAQFtbuWl7kmTm9EkNJwEAAADajQIdAAAAAABtbdWm7Zk2qc/jWwEAAIBhU6ADAAAAAKCtrdq0I0dNm9h0DAAAAKANKdABAAAAANDWVm3cnqOmeXwrAAAAMHwKdAAAAAAAtLXVm7dnhjvQAQAAAAdAgQ4AAAAAgLa2eftApk2a0HQMAAAAoA0p0AEAAAAA0Na27RzI5AnG3QAAAMDwmSgAAAAAANDWtu0cyCETepuOAQAAALQhBToAAAAAANpWrTVbdw5ksgIdAAAAcAAU6AAAAAAAaFs7B2oGazzCFQAAADggJgoAAAAAALSlWms+f/uyJMnUSX0NpwEAAADakYkCAAAAAABtZ8XGbfm9z92Vry1ckfNOPjKXnH1805EAAACANqRABwAAAABAW/ninY/lf/zr3dmyYyD/4+Iz8pbnn5yentJ0LAAAAKANKdABAAAAANAW1m7ekT/4wt354p2P55mzD8tfvOGZOfXo6U3HAgAAANqYAh0AAAAAAOPe1xcuz5WfuyvrtuzIu19xWt7+4rnp6+1pOhYAAADQ5hToAAAAAAAYtzZs25k//uK9+cyCZZl/zPRc/eafylnHHdZ0LAAAAKBDKNABAAAAADBuvfWaBVmwdE1+9SVz8+svn5dJfb1NRwIAAAA6iAIdAAAAAADj0sBgze0Pr83lLzg5//3C+U3HAQAAADpQz1AOKqVcWEpZVEpZXEq5ci/7J5VSPt3af1MpZU5r+4xSyjdLKZtKKX+zx2eeXUq5q/WZvy6llBH5jgAAAAAA6AhPbNiWnQM1p8yc1nQUAAAAoEPtt0BXSulN8oEkFyU5M8kbSyln7nHY5UnW1lpPTfL+JO9rbd+W5A+SvHsvp/7bJG9LMq/168ID+QYAAAAAAOhMD63enCQ58cgpDScBAAAAOtVQHuF6XpLFtdYlSVJKuTbJJUnu3e2YS5L8Yev1Z5P8TSml1Fo3J/lOKeXU3U9YSjk2yaG11u+33v9jkp9N8qUD/1YYS3OuvL7pCByA0fzvtvSqi0ft3AAAAMBPKqVcmOSvkvQm+Uit9ap9HPfa7JrZ/VStdcEYRoSD9siaLUkU6AAAAIDRM5RHuB6f5JHd3i9rbdvrMbXW/iTrk8zYzzmX7eecSZJSyhWllAWllAUrV64cQlwAAAAA6GxDfGpESinTk/x6kpvGNiGMjIfXbElfT8mxh01uOgoAAADQoYZSoGtUrfXDtdZza63nzpw5s+k4AAAAADAe/PCpEbXWHUmefGrEnv4oyfuSbBvLcDAS7n1sQ26464mccOSU9PWO+1E2AAAA0KaGMnV4NMkJu72f3dq212NKKX1JDkuyej/nnL2fcwIAAAAAe7ffp0aUUs5JckKt9fqnOpEnQDDebO8fyF98ZVFe/TffycZt/fnDV5/VdCQAAACggw2lQHdLknmllJNLKROTXJrkuj2OuS7JZa3Xr0vyjVpr3dcJa62PJ9lQSjm/lFKS/GKSLww7PQAAAADwE0opPUn+Mslv7e9YT4BgPLn94bV51V9/J///Nxbn1Wcfl6/95ovy4tOsSwAAAGD09O3vgFprfynlnUluTNKb5GO11ntKKe9NsqDWel2Sjyb5eCllcZI12VWyS5KUUpYmOTTJxFLKzyZ5Ra313iS/muTqJIck+VLrFwAAAACwf/t7asT0JE9L8q1d/341xyS5rpTy6lrrgjFLCUO0dceuu8597LsPZtahk/MPb/6pvPT0o5uOBQAAAHSB/RbokqTWekOSG/bY9p7dXm9L8vp9fHbOPrYvyK4hHgAAAAAwPD98akR2FecuTfJ/P7mz1ro+yVFPvi+lfCvJu5XnGI++v2R1fudf7sxDq7fk559zYq68aH6mT57QdCwAAACgSwypQAcAAAAAjB9DfGoEjGsbt+3MVV+6L5+46eGcNGNKPvW28/PcuTOajgUAAAB0GQU6AAAAAGhD+3tqxB7bXzIWmWA4Lr9mQRYsXZO3vuDk/NYrTs8hE3ubjgQAAAB0IQU6AAAAAADG1OPrt+bmB9fkt195et7x0lObjgMAAAB0sZ6mAwAAAAAA0F2+vnBFkuSVZ81qOAkAAADQ7RToAAAAAAAYU19fuDwnzZiSuTOnNR0FAAAA6HIKdAAAAAAAjJktO/rz3R+szgXzZ6WU0nQcAAAAoMsp0AEAAAAAMGa+88Cq7OgfzMvPOLrpKAAAAAAKdAAAAAAAjJ2vL1yR6ZP6cu6cI5uOAgAAAKBABwAAAADA2OgfGMxX7n0iLzvj6EzsM54GAAAAmmdCAQAAAADAmLjpwTVZu2VnLnrasU1HAQAAAEiiQAcAAAAAwBj50t2P55AJvXnxaTObjgIAAACQRIEOAAAAAIAxMDBYc+M9y/PS+TNzyMTepuMAAAAAJFGgAwAAAABgDNz60Nqs3Ljd41sBAACAcUWBDgAAAACAUbV5e3/e/9X7M6mvJy+df3TTcQAAAAB+qK/pAAAAAAAAdK41m3fkzVffkruWrcv7XvuMTJtkLA0AAACMHyYVAAAAAACMikfXbc0vfPSmLFu7NX/3pmfnFWcd03QkAAAAgB+jQAcAAAAAwIh7YPnG/OLHbs6m7f35+FvOy3NOmdF0JAAAAICfoEAHAAAAAMCIuvWhtXnL1bdkYl9PPn3Fc3PmcYc2HQkAAABgrxToAAAAAAAYMd9ctCK/8k+35phDJ+cf3/KcnDhjStORAAAAAPZJgQ4AAAAAgINWa80131uaP75+YU4/ZnqufvN5mTl9UtOxAAAAAJ6SAh0AAAAAAAdl286B/N7n7srnbn80Lz/j6Lz/587O9MkTmo4FAAAAsF8KdAAAAAAAHLBH1mzJ2//p1tz7+Ib8Py8/Le962anp6SlNxwIAAAAYEgU6AAAAAAAOyHcXr8o7P3lb+gdrPnrZuXnZ/FlNRwIAAAAYFgU6AAAAAACGpdaav/+PJbnqS/fl1KOn5UO/cG5OPmpq07EAAAAAhk2BDgAAAACAIduyoz///bN35ot3Pp6fefox+bPXPTNTJxk1AwAAAO3JVAMAAAAAgCH7H/96d2646/FcedH8/PKLTkkppelIAAAAAAdMgQ4AAAAAgCHZOTCYr96zPK9/9gl5+4vnNh0HAAAA4KD1NB0AAAAAAID2cOtDa7Nxe39eOv/opqMAAAAAjAgFOgAAAAAAhuSb963IhN6SF8w7qukoAAAAACNCgQ4AAAAAgCH55qIVOe/kIzNtUl/TUQAAAABGhAIdAAAAAAD7tWztlty/fFNeerrHtwIAAACdQ4EOAAAAAID9+vf7VyZJXqJABwAAAHQQBToAAAAAAPbr1qVrc9S0iZk7c2rTUQAAAABGjAIdAAAAAAD7ddvDa/OsE49IKaXpKAAAAAAjRoEOAAAAAICntHrT9ixdvSXnnHhE01EAAAAARpQCHQAAAAAAT+n2h9clSc458fBGcwAAAACMNAU6AAAAAACe0m0Pr01fT8kzZh/edBQAAACAEdXXdACApzLnyutH5bxLr7p4VM4LAAAA0IkWLF2bM449NIdM7G06CgAAAMCIcgc6AAAAAAD2ad2WHbn14bV50WlHNR0FAAAAYMQp0AEAAAAAsE/fWrQyA4M1F5wxq+koAAAAACNOgQ4AAAAAgH362sLlOWraxJw9+/CmowAAAACMOAU6AAAAAAD2aufAYP79/pV52fyj09NTmo4DAAAAMOIU6AAAAAAA2KtbHlyTjdv6Pb4VAAAA6FgKdAAAAAAA7NW/P7AyE3t78sJ5RzUdBQAAAGBUKNABAAAAALBXP1ixKafMnJopE/uajgIAAAAwKhToAAAAAADYqyWrNufko6Y2HQMAAABg1CjQAQAAAADwE/oHBvPw6i2Zo0AHAAAAdDAFOgAAAAAAfsKytVvTP1jdgQ4AAADoaAp0AAAAAAD8hAdXbU6SnKJABwAAAHQwBToAAAAAAH7MY+u25m++uTg9JTll5rSm4wAAAACMmr6mAwAAAAAAMH7ccNfjufJf7szAYM1fvuHsHDl1YtORAAAAAEaNAh0AAAAAANm8vT/v/bd78+kFj+SZsw/LX136rMzx+FYAAACgwynQAQAAAAB0ubuWrc+vX3t7Hly9Oe946dz8xstPy4TenqZjAQAAAIw6BToAAAAAgC41OFjz9/+xJH/+lUWZMXVSPvnW8/PcuTOajgUAAAAwZhToAAAAAAC60PIN2/Kbn7kj3128OheedUyueu3Tc/iUiU3HAgAAABhTCnQAAAAAAF2m1ppf+odbsnTV5lz1356en/upE1JKaToWAAAAwJhToAMAAAAA6DLfXLQiCx/fkD9//TPzumfPbjoOAAAAQGN6mg4AAAAAAMDY+rtvLclxh03OJWcf13QUAAAAgEYp0AEAAAAAdJFbH1qTm5euyVtfeEom9BoRAwAAAN3NdAQAAAAAoIv87beW5PApE3LpeSc0HQUAAACgcQp0AAAAAABd4v7lG/O1hctz2XPnZMrEvqbjAAAAADROgQ4AAAAAoEt84vsPZVJfTy573pymowAAAACMCwp0AAAAAABd4juLV+X8U2bkyKkTm44CAAAAMC4o0AEAAAAAdIEVG7blBys357lzZzQdBQAAAGDcUKADAAAAAOgC/7lkdZLkeQp0AAAAAD+kQAcAAAAA0AW+v2R1pk/uy1nHHdZ0FAAAAIBxQ4EOAAAAAKAL/OcPVuc5Jx+Z3p7SdBQAAACAcUOBDgAAAACgw63ZvCNLV2/JeScf2XQUAAAAgHFFgQ4AAAAAoMNt3LYzSTJj6qSGkwAAAACMLwp0AAAAAAAdbsuOgSTJlIm9DScBAAAAGF8U6AAAAAAAOtzWnbsKdJMV6AAAAAB+jAIdAAAAAECH2/rkHegmKNABAAAA7E6BDgAAAACgwz1ZoDvEHegAAAAAfowCHQAAAABAh1uxcXuSZPrkCQ0nAQAAABhfFOgAAAAAADrcV+59IrOPOCRzZkxpOgoAAADAuKJABwAAAADQwdZt2ZHvPLAqFz/j2JRSmo4DAAAAMK4o0AEAAAAAdLCv3LM8/YM1r3r6cU1HAQAAABh3FOgAAAAAADrYF+96PCceOSVPO/7QpqMAAAAAjDsKdAAAAAAAHWrt5h357mKPbwUAAADYFwU6AAAAAIAOVGvNX3x1UQYGa171jGObjgMAAAAwLinQAQAAAAB0oKu/tzT/9P2Hc8WLTslZxx3WdBwAAACAcamv6QAwFuZceX3TEQBg1IzWn3NLr7p4VM4LAACMvq8vXJ4/+uK9ecWZs/I7F85vOg4AAADAuOUOdAAAAAAAHeTexzbkXZ+6PWced2j+96Vnp7enNB0JAAAAYNxSoAMAAAAA6BDLN2zL5dfckkMnT8hHL/upTJnoISQAAAAAT8X0BAAAAACgA2zZ0Z+3XrMg67fuzD+//bmZdejkpiMBAAAAjHsKdAAAAAAAHeDTtzySux5dn4/84rk567jDmo4DAAAA0BY8whUAAAAAoAM8uGpzDp3cl5efOavpKAAAAABtQ4EOAAAAAKADLFu7NbOPmNJ0DAAAAIC2okAHAAAAANABlq3dktlHHNJ0DAAAAIC2okAHAAAAANDmaq1ZtnZrjlegAwAAABgWBToAAAAAgDa3bsvObNkx4BGuAAAAAMOkQAcAAAAA0MYeXr0l7/rU7UmS02ZNazgNAAAAQHvpazoAAAAAAADD1z8wmI9858H876/dn76envzRJWflBace1XQsAAAAgLaiQAcAAAAA0GbuWrY+V37uztzz2Ib89Jmz8t5Lzsqxhx3SdCwAAACAtqNABwAAAADQJrbs6M/7v3p/PvqdBzNj2qT87c+fkwufdkxKKU1HAwAAAGhLCnQAAAAAAG3g2/evzO99/q4sW7s1bzzvxFx50fwcdsiEpmMBAAAAtDUFOgAAAACAcWz1pu354+sX5vO3P5pTZk7Np684P885ZUbTsQAAAAA6ggIdAAAAAMA41D8wmE/e/HD+/MZF2bpzIL92wby846VzM6mvt+loAAAAAB1DgQ4AAAAAYJy5ZemavOcL92Th4xvy/FNn5A//r7Myb9b0pmMBAAAAdBwFOgAAAACAcWLFhm35X1+6L5+//dEcd9jkfPDnz8lFTzsmpZSmowEAAAB0JAU6AAAAAICG7RwYzNXfXZq/+voD2dE/mHe97NT8ykvmZspEI1wAAACA0WT6AgAAAADQoO8uXpX/ed09WbxiU142/+i851VnZs5RU5uOBQAAANAVFOgAAAAAABqwfMO2vPff7s31dz2eE4+cko9edm4uOGNW07EAAAAAuooCHQAAAABAA37j2jty+yNr81s/fVre9qJTMnlCb9ORAAAAALqOAh0AAAAAwBh7YPnG/OeS1fmdC+fnV14yt+k4AAAAAF2rp+kAAAAAAADd5hM3PZyJvT15w7mzm44CAAAA0NUU6AAAAAAAxtCWHf35l1uX5aKnH5MZ0yY1HQcAAACgqynQAQAAAACMoevueCwbt/fnTeef1HQUAAAAgK6nQAcAAAAAMEZqrfmnmx7K6bOm59yTjmg6DgAAAEDXU6ADAAAAABgjyzdsz92Pbsjrz52dUkrTcQAAAAC6ngIdAAAAAMAY2d4/kCQ5curEhpMAAAAAkCjQAQAAAACMmYHBmiTp7XH3OQAAAIDxQIEOAAAAANpQKeXCUsqiUsriUsqVe9n/m6WUe0spd5ZSvl5KOamJnPy4wbqrQOfxrQAAAADjgwIdAAAAALSZUkpvkg8kuSjJmUneWEo5c4/Dbk9ybq31GUk+m+RPxzYlezMwuOtrrwIdAAAAwLigQAcAAAAA7ee8JItrrUtqrTuSXJvkkt0PqLV+s9a6pfX2+0lmj3FG9uJHj3BtOAgAAAAASRToAAAAAKAdHZ/kkd3eL2tt25fLk3xpbztKKVeUUhaUUhasXLlyBCOyN5u29ydJJk3obTgJAAAAAIkCHQAAAAB0tFLKm5Kcm+TP9ra/1vrhWuu5tdZzZ86cObbhutCdy9YlSc467tBmgwAAAACQJOlrOgAAAAAAMGyPJjlht/ezW9t+TCnl5Ul+P8mLa63bxygbT+H2R9bl+MMPydHTJzcdBQAAAIC4Ax0AAAAAtKNbkswrpZxcSpmY5NIk1+1+QCnlWUk+lOTVtdYVDWRkL+54eF3OPuHwpmMAAAAA0KJABwAAAABtptban+SdSW5MsjDJZ2qt95RS3ltKeXXrsD9LMi3JP5dS7iilXLeP0zFGVm7cnkfXbVWgAwAAABhHPMIVAAAAANpQrfWGJDfsse09u71++ZiH4ind8ci6JMnZJx7eaA4AAAAAfsQd6AAAAAAAxsB9j29IkjztuMMaTgIAAADAkxToAAAAAADGwNotOzN1Ym8OmdjbdBQAAAAAWoZUoCulXFhKWVRKWVxKuXIv+yeVUj7d2n9TKWXObvt+t7V9USnllbttX1pKuauUckcpZcGIfDcAAAAAAOPU+q07c/iUiU3HAAAAAGA3ffs7oJTSm+QDSX46ybIkt5RSrqu13rvbYZcnWVtrPbWUcmmS9yX5uVLKmUkuTXJWkuOSfK2UclqtdaD1uZfWWleN4PcDAAAAADAurd+6I4ceMqHpGAAAAADsZih3oDsvyeJa65Ja644k1ya5ZI9jLklyTev1Z5NcUEopre3X1lq311ofTLK4dT4AAAAAgK6yfuvOHK5ABwAAADCu7PcOdEmOT/LIbu+XJXnOvo6ptfaXUtYnmdHa/v09Pnt863VN8pVSSk3yoVrrh/f2P15KuSLJFUly4oknDiEu0IQ5V17fdIRxYbR+H5ZedfGonLfd8rJLO/7/zZoAAABI1m3ZmbkzpzUdAwAAAIDdDOUOdKPlBbXWc5JclOQdpZQX7e2gWuuHa63n1lrPnTlz5tgmBAAAAAAYIeu27szhU9yBDgAAAGA8GUqB7tEkJ+z2fnZr216PKaX0JTksyeqn+myt9cmvK5J8Ph7tCgAAAAB0qFpr1m7ekSOnTmw6CgAAAAC7GUqB7pYk80opJ5dSJia5NMl1exxzXZLLWq9fl+Qbtdba2n5pKWVSKeXkJPOS3FxKmVpKmZ4kpZSpSV6R5O6D/3YAAAAAAMafDdv60z9YFegAAAAAxpm+/R1Qa+0vpbwzyY1JepN8rNZ6TynlvUkW1FqvS/LRJB8vpSxOsia7SnZpHfeZJPcm6U/yjlrrQCllVpLPl1KezPDJWuuXR+H7AwAAAABo3JrNO5JEgQ4AAABgnNlvgS5Jaq03JLlhj23v2e31tiSv38dn/yTJn+yxbUmSZw43LAAAAABAO1qzeXsSBToAAACA8WYoj3AFAAAAAOAgrNm8M0kyY+qkhpMAAAAAsDsFOgAAAACAUVRrzb/e/mh6SnLs4ZObjgMAAADAbhToAAAAAABG0ce+uzTX3/V4fvuV83PUNHegAwAAABhPFOgAAAAAAEbJLUvX5H/dsDCvOHNW3v7iU5qOAwAAAMAeFOgAAAAAAEbBio3b8o5P3JbZRxySP3/DM1NKaToSAAAAAHvoazoAAAAAAECn2TkwmHd+8vZs2LYz17zlvBw6eULTkQAAAADYCwU6AAAAAIAR9mc3LsrND67J+3/umTnj2EObjgMAAADAPniEKwAAAADACHps3dZ8+NtL8sbzTsxrnjW76TgAAAAAPAUFOgAAAACAEfTlu59IkrzthSc3nAQAAACA/VGgAwAAAAAYQV+6+/HMP2Z6Tpk5rekoAAAAAOyHAh0AAAAAwAhZvmFbFjy0Nhc97dimowAAAAAwBAp0AAAAAAAj5MZ7nkitycXPOKbpKAAAAAAMgQIdAAAAAMAIueGuxzPv6Gk59ejpTUcBAAAAYAgU6AAAAAAARsiCpWvz4tNmNh0DAAAAgCFSoAMAAAAAGCH9gzVTJvU1HQMAAACAIVKgAwAAAAAYAbXWJElpOAcAAAAAQ6dABwAAAAAwAlr9uRQNOgAAAIC2oUAHAAAAADACWv259GjQAQAAALQNBToAAAAAgBEw6BGuAAAAAG1HgQ4AAAAAYARs2LozSXLIxN6GkwAAAAAwVAp0AAAAAAAj4I5H1iVJnnb8Yc0GAQAAAGDIFOgAAAAAAEbAbQ+vTW9PyTNmK9ABAAAAtAsFOgAAAACAEXDbQ+tyxrHTM2ViX9NRAAAAABgiBToAAAAAgIPUPzCY/1q2LueceETTUQAAAAAYBgU6AAAAAICDtGj5xmzZMaBABwAAANBmFOgAAAAAAA7SncvWJ0nOPuHwZoMAAAAAMCwKdAAAAAAAB2nRExszZWJvTjxyStNRAAAAABgGBToAAAAAgIO06ImNmTdrenp6StNRAAAAABgGBToAAAAAgIN0//KNmT9retMxAAAAABgmBToAAAAAgIOwcuP2rN68I6cdo0AHAAAA0G4U6AAAAAAADsL9yzcmSeYr0AEAAAC0HQU6AAAAAICDsGztliTJSTOmNJwEAAAAgOFSoAMAAAAAOAgDg7u+9vUYtwIAAAC0GxMdAAAAAICDUFOTJKU0HAQAAACAYVOgAwAAAAA4CHVXfy76cwAAAADtR4EOAAAAAGAkaNABAAAAtB0FOgAAAACAg1CbDgAAAADAAVOgAwAAAAA4CLX1DNee4hZ0AAAAAO2mr+kAAOzfnCuvbzoCB8B/N/bUbmtitPIuveriUTkvAAA0ZWBwV4Gur0eBDgAAAKDduAMdAAAAAMBBeLJA16tABwAAANB2FOgAAAAAAA5C/w/vQGfcCgAAANBuTHQAAAAAAA7Ck3eg058DAAAAaD9GOgAAAAAAB6F/wB3oAAAAANqViQ4AAAAAwEHY1j+Qvp6SntJ0EgAAAACGS4EOAAAAAOAgrNq4PUdNm5RSNOgAAAAA2o0CHQAAAADAQVi1aXuOmj6x6RgAAAAAHAAFOgAAAACAg7By06470AEAAADQfhToAAAAAAAOwqqNOzJTgQ4AAACgLSnQAQAAAAAcoMHBmtWbt+eo6Qp0AAAAAO1IgQ4AAAAA4ADd/sja7ByomTNjStNRAAAAADgACnQAAAAAAAfoQ/++JIcdMiGvesZxTUcBAAAA4AAo0AEAAAAAHIAlKzflqwuX5xfOPylTJ/U1HQcAAACAA6BABwAAAABwAD7ynQczobcnlz1vTtNRAAAAADhACnQAAAAAAMO0atP2fPbWZXntOcdn5vRJTccBAAAA4AAp0AEAAAAADNM/fm9pdg4M5q0vPKXpKAAAAAAcBAU6AAAAAIBhuuHuJ/KCU4/K3JnTmo4CAAAAwEFQoAMAAAAAGIbt/QN5cNXmPHP24U1HAQAAAOAgKdABAAAAAAzD4hWbMjBYc/ox05uOAgAAAMBBUqADAAAAABiGRU9sTJLMV6ADAAAAaHsKdAAAAAAAw7DoiY2Z2NuTOUdNbToKAAAAAAdJgQ4AAAAAYBjue2Jj5h49LRN6jVcBAAAA2p0JDwAAAADAMDywfGNOnzWt6RgAAAAAjAAFOgAAAACAIdq4bWceW78t82ZNbzoKAAAAACNAgQ4AAAAAYIh+sHJzkuTUo92BDgAAAKATKNABAAAAAAzR4hWbkiTzFOgAAAAAOoICHQAAAADAED2wYmMm9vbkxCOnNB0FAAAAgBGgQAcAAAAAMESLl2/KKTOnpq/XaBUAAACgE5jyAAAAAAAM0WPrt2X2EYc0HQMAAACAEaJABwAAAAAwRAODg5ng7nMAAAAAHcOkBwAAAABgiPoHa3p7StMxAAAAABghCnQAAAAAAEM0MFjTp0AHAAAA0DEU6AAAAAAAhqh/oKa3x1gVAAAAoFOY9AAAAAAADJE70AEAAAB0FgU6AAAAAIAh6h8cTG+vAh0AAABAp1CgAwAAAAAYou39g5nYa6wKAAAA0ClMegAAAAAAhmh7/2AmTTBWBQAAAOgUJj0AAAAAAENQa82O/sFMcgc6AAAAgI5h0gMAAAAAMAQ7B2qSZNKE3oaTAAAAADBSFOgAAAAAAIZge/9AkmSiO9ABAAAAdAyTHgAAAACAIehv3YGur7c0nAQAAACAkaJABwAAAAAwBLX1VX0OAAAAoHMo0AEAAAAADEMpKnQAAAAAnaKv6QAATZhz5fVNR+hoo/X7u/Sqi0flvIy+dlsTrhGjq93Ww2jx+wBAJ/PnHJ2q1rr/gwAAAABoK+5ABwAAAAAwBD98hKsb0AEAAAB0DAU6AAAAAIAh6B/YVaHTnwMAAADoHAp0AAAAAAD78eCqzfmlf7g5pSTzZk1vOg4AAAAAI6Sv6QAAAAAAAOPZjfc8kXd/5r/S21ty9ZvPy/mnzGg6EgAAAAAjRIEOAAAAAGAv+gcG82c3LsqHvr0kz5x9WD7w8+dk9hFTmo4FAAAAwAhSoAMAAAAA2MOKjdvyzk/enpsfXJM3nX9i/uBVZ2ZSX2/TsQAAAAAYYQp0AAAAAAC7ufnBNXnHJ2/Lxm078/6fe2Ze86zZTUcCAAAAYJQo0AEAAAAAJNneP5CP/MeD+cuv3p8Tj5ySj19+XuYfc2jTsQAAAAAYRQp0AAAAAEBXq7XmhrueyFVfXphH1mzNxU8/Nle99umZPnlC09EAAAAAGGUKdAAAAABA17rt4bX5k+sX5taH1mb+MdPz8cvPywvnzWw6FgAAAABjRIEOAAAAAOg6j6zZkvd9+b588c7HM3P6pLzvtU/P6559Qnp7StPRAAAAABhDCnQAAAAAQNdYv3VnPvjNxfmH7y5NT0/yaxfMyy+/6JRMnWRUCgAAANCNTIUAAAAAgI63c2Awn/j+Q/mrrz+QdVt35rXnzM67X3F6jjlsctPRAAAAAGiQAh0AAAAA0NG+ed+K/NEX782SVZvzvLkz8vsXn5Gzjjus6VgAAAAAjAMKdAAAAABAR7vnsfUpJfnoZefmZfOPTiml6UgAAAAAjBMKdAAAAABAR3vbi07JL794bib09jQdBQAAAIBxRoEOAAAAAOhok/p6m44AAAAAwDjln1wCAAAAQBsqpVxYSllUSllcSrlyL/snlVI+3dp/UyllTgMxAQAAAGBcU6ADAAAAgDZTSulN8oEkFyU5M8kbSyln7nHY5UnW1lpPTfL+JO8b25QAAAAAMP4p0AEAAABA+zkvyeJa65Ja644k1ya5ZI9jLklyTev1Z5NcUEopY5gRAAAAAMY9BToAAAAAaD/HJ3lkt/fLWtv2ekyttT/J+iQz9jxRKeWKUsqCUsqClStXjlJcAAAAABifFOgAAAAAoIvVWj9caz231nruzJkzm44DAAAAAGNKgQ4AAAAA2s+jSU7Y7f3s1ra9HlNK6UtyWJLVY5IOAAAAANqEAh0AAAAAtJ9bkswrpZxcSpmY5NIk1+1xzHVJLmu9fl2Sb9Ra6xhmBAAAAIBxr6/pAAAAAADA8NRa+0sp70xyY5LeJB+rtd5TSnlvkgW11uuSfDTJx0spi5Osya6SHQAAAACwGwU6AAAAAGhDtdYbktywx7b37PZ6W5LXj3UuAAAAAGgnHuEKAAAAAAAAAABAV1KgAwAAAAAAAAAAoCsp0AEAAAAAAAAAANCVFOgAAAAAAAAAAADoSgp0AAAAAAAAAAAAdCUFOgAAAAAAAAAAALqSAh0AAAAAAAAAAABdSYEOAAAAAAAAAACArqRABwAAAAAAAAAAQFdSoAMAAAAAAAAAAKArKdABAAAAAAAAAADQlRToAAAAAAAAAAAA6EoKdAAAAAAAAAAAAHQlBToAAAAAAAAAAAC6kgIdAAAAAAAAAAAAXWlIBbpSyoWllEWllMWllCv3sn9SKeXTrf03lVLm7Lbvd1vbF5VSXjnUcwIAAAAAAAAAAMBo2m+BrpTSm+QDSS5KcmaSN5ZSztzjsMuTrK21nprk/Une1/rsmUkuTXJWkguTfLCU0jvEcwIAAAAAAAAAAMCoGcod6M5LsrjWuqTWuiPJtUku2eOYS5Jc03r92SQXlFJKa/u1tdbttdYHkyxunW8o5wQAAAAAAAAAAIBR0zeEY45P8shu75clec6+jqm19pdS1ieZ0dr+/T0+e3zr9f7OmSQppVyR5IrW202llEVDyNwujkqyqukQMIqscUZUeV/TCX6CNd6wcbgmOk1brXHrYRe/D8PSVmscDoA1TsfZ48+5TlvjJzUdIEluvfXWVaWUh5rOMYI6bZ3AnqxxOp01Tqezxul01jidzhqn03XiGt/rDG4oBbpG1Vo/nOTDTecYDaWUBbXWc5vOAaPFGqfTWeN0OmucTmeN0+mscTqdNT46aq0zm84wkqwTOp01Tqezxul01jidzhqn01njdLpuWuNDeYTro0lO2O397Na2vR5TSulLcliS1U/x2aGcEwAAAAAAAAAAAEbNUAp0tySZV0o5uZQyMcmlSa7b45jrklzWev26JN+otdbW9ktLKZNKKScnmZfk5iGeEwAAAAAAAAAAAEbNfh/hWmvtL6W8M8mNSXqTfKzWek8p5b1JFtRar0vy0SQfL6UsTrImuwpxaR33mST3JulP8o5a60CS7O2cI//tjXsd+Wha2I01Tqezxul01jidzhqn01njdDprnKGwTuh01jidzhqn01njdDprnE5njdPpumaNl103igMAAAAAAAAAAIDuMpRHuAIAAAAAAAAAAEDHUaADAAAAAAAAAACgKynQNaCUcmEpZVEpZXEp5cqm88BIKKUsLaXcVUq5o5SyoLXtyFLKV0spD7S+HtF0ThiOUsrHSikrSil377Ztr+u67PLXrWv7naWUc5pLDvu3j/X9h6WUR1vX8jtKKT+z277fba3vRaWUVzaTGoaulHJCKeWbpZR7Syn3lFJ+vbXddZyO8BRr3LWcjlBKmVxKubmU8l+tNf7/trafXEq5qbWWP11KmdjaPqn1fnFr/5xGvwHGBTM4OpEZHJ3G/I1OZwZHJzN/o9OZv9ENzOB+RIFujJVSepN8IMlFSc5M8sZSypnNpoIR89Ja69m11nNb769M8vVa67wkX2+9h3ZydZIL99i2r3V9UZJ5rV9XJPnbMcoIB+rq/OT6TpL3t67lZ9dab0iS1t9VLk1yVuszH2z9nQbGs/4kv1VrPTPJ+Une0VrLruN0in2t8cS1nM6wPcnLaq3PTHJ2kgtLKecneV92rfFTk6xNcnnr+MuTrG1tf3/rOLqYGRwdzgyOTnJ1zN/obFfHDI7OZf5GpzN/oxuYwbUo0I2985IsrrUuqbXuSHJtkksazgSj5ZIk17ReX5PkZ5uLAsNXa/12kjV7bN7Xur4kyT/WXb6f5PBSyrFjEhQOwD7W975ckuTaWuv2WuuDSRZn199pYNyqtT5ea72t9XpjkoVJjo/rOB3iKdb4vriW01Za1+NNrbcTWr9qkpcl+Wxr+57X8Sev759NckEppYxNWsYpMzi6iRkcbcv8jU5nBkcnM3+j05m/0Q3M4H5EgW7sHZ/kkd3eL8tTX2ShXdQkXyml3FpKuaK1bVat9fHW6yeSzGomGoyofa1r13c6xTtbt8//2G6P/bG+aWutW4g/K8lNcR2nA+2xxhPXcjpEKaW3lHJHkhVJvprkB0nW1Vr7W4fsvo5/uMZb+9cnmTGmgRlvXPfoVGZwdAM/t9EN/NxGRzF/o9OZv9HJzOB2UaADRsoLaq3nZNftl99RSnnR7jtrrTW7BnzQMaxrOtDfJpmbXbdofjzJXzSaBkZAKWVakn9J8hu11g2773MdpxPsZY27ltMxaq0Dtdazk8zOrn+xPb/ZRADjghkcXcWapkP5uY2OYv5GpzN/o9OZwe2iQDf2Hk1ywm7vZ7e2QVurtT7a+roiyeez68K6/MlbL7e+rmguIYyYfa1r13faXq11eesvyYNJ/j4/urW49U1bKqVMyK7BxidqrZ9rbXYdp2PsbY27ltOJaq3rknwzyXOz6xE/fa1du6/jH67x1v7Dkqwe26SMM657dCQzOLqEn9voaH5uo5OYv9HpzN/oJt0+g1OgG3u3JJlXSjm5lDIxyaVJrms4ExyUUsrUUsr0J18neUWSu7NrbV/WOuyyJF9oJiGMqH2t6+uS/GLZ5fwk63e7RTm0hSeHGi2vya5rebJrfV9aSplUSjk5ybwkN491PhiOUkpJ8tEkC2utf7nbLtdxOsK+1rhrOZ2ilDKzlHJ46/UhSX46ycLsGuK9rnXYntfxJ6/vr0vyjdadDuheZnB0HDM4uoif2+hofm6jU5i/0enM3+gGZnA/0rf/QxhJtdb+Uso7k9yYpDfJx2qt9zQcCw7WrCSf3/V3iPQl+WSt9cullFuSfKaUcnmSh5K8ocGMMGyllE8leUmSo0opy5L8zyRXZe/r+oYkP5NkcZItSd485oFhGPaxvl9SSjk7u26pvzTJLydJrfWeUspnktybpD/JO2qtAw3EhuF4fpJfSHJXKeWO1rbfi+s4nWNfa/yNruV0iGOTXFNK6c2ufwD6mVrrF0sp9ya5tpTyx0luz65BdlpfP15KWZxkTXaVpehiZnB0KDM4Oo75G53ODI4OZ/5GpzN/oxuYwbWUDikCAgAAAAAAAAAAwLB4hCsAAAAAAAAAAABdSYEOAAAAAAAAAACArqRABwAAAAAAAAAAQFdSoAMAAAAAAAAAAKArKdABAAAAAAAAAADQlRToAAAAAAAAAAAA6EoKdAAAAAAAAAAAAHSl/wOUrVhA7n2aNQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 2520x720 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(35,10))\n", | |
"\n", | |
"ax1.set_title(\"Histograma de las respuestas de la encuesta de AKAIKE\", {'fontsize': 28})\n", | |
"ax1.hist(data, bins=50, density=True) # density=True es para normalizarlo\n", | |
"\n", | |
"ax2.set_title(\"Función de distribución empírica de las respuestas de la encuesta de AKAIKE\", {'fontsize': 28})\n", | |
"ax2.plot(ecdf.x, ecdf.y)\n", | |
"\n", | |
"fig.tight_layout()\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4bd1afa5", | |
"metadata": {}, | |
"source": [ | |
"$$ $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "877ad567", | |
"metadata": {}, | |
"source": [ | |
"La empresa reconsiderará el precio si hay evidencia de que las personas estan dispuestas a pagar más de $50.\n", | |
"\n", | |
"Es decir, estoy buscando ver evidencia de que la media de mi población es mejor que 50.\n", | |
"\n", | |
"$$ H_0: \\mu \\leq 50 \\quad vs \\quad H_1: \\mu \\gt 50 $$\n", | |
"\n", | |
"$$ H_0: \\lambda \\geq \\frac{1}{50} \\quad vs \\quad H_1: \\lambda \\lt \\frac{1}{50} $$\n", | |
"\n", | |
"Siendo la distribución exponencial miembro de la familia exponencial, buscar un estadístico $T$ para $\\lambda$ se puede lograr con el teorema de la factorización.\n", | |
"\n", | |
"$$ L = \\lambda^n * e^{-\\lambda * \\sum_{i=1}^{n} X_i} $$\n", | |
"\n", | |
"$$ T = \\sum_{i=1}^{n} X_i $$\n", | |
"\n", | |
"Mi test de hipótesis se arma como:\n", | |
"\n", | |
"$$\n", | |
"\\delta(\\underline{X}) = \\begin{cases}\n", | |
" 1 \\quad si \\quad \\sum_{i=1}^{100} X_i \\gt k_\\alpha \\\\ \\\\\n", | |
" 0 \\quad si \\quad \\sum_{i=1}^{100} X_i \\leq k_\\alpha\n", | |
" \\end{cases}\n", | |
"$$\n", | |
"\n", | |
"Calculemos ahora $k_\\alpha$\n", | |
"\n", | |
"$$ \\lambda \\sum_{i=1}^{n} X_i \\sim \\chi_{2n, \\alpha}^{2} \\Rightarrow \\lambda \\sum_{i=1}^{100} X_i \\sim \\chi_{200, 0.05}^{2}$$\n", | |
"\n", | |
"Y juntemos ambos resultados\n", | |
"\n", | |
"$$\n", | |
"\\delta(\\underline{X}) = \\begin{cases}\n", | |
" 1 \\quad si \\quad 2\\lambda\\sum_{i=1}^{100} X_i \\gt \\chi_{200, 0.05}^{2} \\\\ \\\\\n", | |
" 0 \\quad si \\quad 2\\lambda\\sum_{i=1}^{100} X_i \\leq \\chi_{200, 0.05}^{2}\n", | |
" \\end{cases}\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "c081c06c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"¿221.723328 es mayor a 233.99426889232492? False\n" | |
] | |
} | |
], | |
"source": [ | |
"from scipy.stats import chi2 \n", | |
"\n", | |
"suma_datos = sum(data)\n", | |
"lamb = 1/50\n", | |
"izq = 2 * lamb * suma_datos\n", | |
"\n", | |
"der = chi2.ppf(1 - 0.05, 200)\n", | |
"\n", | |
"print(f\"¿{izq} es mayor a {der}? {izq > der}\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3aede9e9", | |
"metadata": {}, | |
"source": [ | |
"Por último, el P-Valor lo tenemos que comparar contra $\\alpha = 0.05$ \n", | |
"\n", | |
"$$\\mathbb{P}\\left(\\chi_{200}^{2} \\gt 221\\right)$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "4b955a0b", | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"¿0.14722538959198506 es mayor a 0.05? True\n" | |
] | |
} | |
], | |
"source": [ | |
"p_valor = 1 - chi2.cdf(221, 200)\n", | |
"\n", | |
"print(f\"¿{p_valor} es mayor a {0.05}? {p_valor > 0.05}\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d42522e4", | |
"metadata": {}, | |
"source": [ | |
"Como el p_valor es mayor al nivel de significación, no puedo recomendar a la empresa subir el precio!" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7bccf264", | |
"metadata": {}, | |
"source": [ | |
"$$ $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "5724f3d2", | |
"metadata": {}, | |
"source": [ | |
"Para encontrar el p-valor asintótico quiero hacer uso de la siguiente propipedad\n", | |
"\n", | |
"> Propiedades Asintóticas de los estimadores de máxima verosimilitud\n", | |
"\n", | |
"$$ (\\hat{\\lambda}(\\underline{X}) - \\lambda) * \\sqrt{n * \\mathcal{I}(\\lambda)} \\xrightarrow[n\\to\\infty]{\\mathcal{D}} \\mathcal{N}(0,1) $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "de87d444", | |
"metadata": {}, | |
"source": [ | |
"Para llegar a eso, primero necesitamos calcular el EMV. Como ya conocemos la función de verosimilitud, solo nos queda...\n", | |
"\n", | |
"$$ L = \\lambda^n * e^{-\\lambda * \\sum_{i=1}^{n} X_i} $$\n", | |
"\n", | |
"$$ \\ln(L) = n \\ln(\\lambda) - \\lambda \\sum_{i=1}^{n} X_i $$\n", | |
"\n", | |
"$$ \\frac{\\partial\\ln(L)}{\\partial\\lambda} = \\frac{n}{\\lambda} - \\sum_{i=1}^{n} X_i $$\n", | |
"\n", | |
"Igualando a cero, nos queda\n", | |
"\n", | |
"$$ \\hat{\\lambda} = \\frac{n}{\\sum_{i=1}^{n} X_i} $$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7f5fe12a", | |
"metadata": {}, | |
"source": [ | |
"Por otro lado, precisamos de la información de Fisher de la distribución exponencial\n", | |
"\n", | |
"$$ \\mathcal{I}(\\lambda) = - E\\left[ \\frac{\\partial^2}{\\partial^2\\lambda} \\ln(f_X(x)) \\right] $$\n", | |
"\n", | |
"Vayamos por partes... Primero el $\\ln$, después las derivadas.\n", | |
"\n", | |
"$$ \\ln(f_X(x)) = \\ln(\\lambda e^{- \\lambda x}) = - \\lambda x \\ln(\\lambda)$$\n", | |
"\n", | |
"$$ \\frac{\\partial \\ln(f_X(x)))}{\\partial\\lambda} = -x $$\n", | |
"\n", | |
"$$ \\frac{\\partial^2 \\ln(f_X(x)))}{\\partial^2\\lambda} = -\\frac{x}{\\lambda} $$\n", | |
"\n", | |
"Ahora sí, solo buscamos la esperanza de $-\\frac{x}{\\lambda}$\n", | |
"\n", | |
"$$ \\mathcal{I}(\\lambda) = - E\\left[ -\\frac{x}{\\lambda} \\right] = \\frac{1}{\\lambda^2}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "8d799ff9", | |
"metadata": {}, | |
"source": [ | |
"Ahora si, podemos usar la propiedad\n", | |
"\n", | |
"$$ (\\hat{\\lambda}(\\underline{X}) - \\lambda) * \\sqrt{n * \\mathcal{I}(\\lambda)} \\xrightarrow[n\\to\\infty]{\\mathcal{D}} \\mathcal{N}(0,1) $$\n", | |
"\n", | |
"$$ \\left(\\frac{n}{\\sum_{i=1}^{n} X_i} - \\lambda\\right) * \\sqrt{n * \\frac{1}{\\lambda^2}} \\sim \\mathcal{N}(0,1) $$\n", | |
"\n", | |
"$$ \\delta(\\underline{X}) = \\mathbb{1} \\left\\{ \\left(\\frac{n}{\\sum_{i=1}^{n} X_i} - \\lambda\\right) * \\sqrt{n * \\frac{1}{\\lambda^2}} \\lt k_\\alpha \\right\\} $$\n", | |
"\n", | |
"$$ 0.05 = \\lim_{n\\to\\infty} \\mathbb{P}_{\\lambda=\\frac{1}{50}} \\left( \\left(\\frac{n}{\\sum_{i=1}^{n} X_i} - \\lambda\\right) * \\sqrt{n * \\frac{1}{\\lambda^2}} \\lt Z_{0.05} \\right) $$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "03faf929", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"¿-0.9797493207390432 es menor a -1.6448536269514729? False\n" | |
] | |
} | |
], | |
"source": [ | |
"from scipy.stats import norm\n", | |
"\n", | |
"suma_datos = sum(data)\n", | |
"n = 100\n", | |
"lamb = 1/50\n", | |
"\n", | |
"\n", | |
"izq = ((n / suma_datos) - lamb) * (n * (1 / (lamb**2)))**(1/2)\n", | |
"der = norm.ppf(0.05)\n", | |
"\n", | |
"print(f\"¿{izq} es menor a {der}? {izq < der}\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "47e73e15", | |
"metadata": {}, | |
"source": [ | |
"Finalmente, el P-Valor lo tenemos que comparar contra $\\alpha = 0.05$ \n", | |
"\n", | |
"$$\\mathbb{P}\\left( \\left(\\frac{n}{\\sum_{i=1}^{n} X_i} - \\lambda\\right) * \\sqrt{n * \\frac{1}{\\lambda^2}} \\lt -0.9797 \\right) $$ " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "c7795859", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"¿0.1636049369480293 es mayor a 0.05? True\n" | |
] | |
} | |
], | |
"source": [ | |
"p_valor_asintotico = norm.cdf(izq)\n", | |
"\n", | |
"print(f\"¿{p_valor_asintotico} es mayor a {0.05}? {p_valor_asintotico > 0.05}\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "252b65b9", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Los valores del p_valor (0.1472) y del p_valor_asintotico (0.1636) se asemejan bastante\n" | |
] | |
} | |
], | |
"source": [ | |
"print(f\"Los valores del p_valor ({round(p_valor, 4)}) y del p_valor_asintotico ({round(p_valor_asintotico, 4)}) se asemejan bastante\")" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.4" | |
}, | |
"title": "Ejercicios Obligatorios" | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment