Created
September 18, 2013 10:13
-
-
Save FedericoV/6607139 to your computer and use it in GitHub Desktop.
Assimulo and sensitivity
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from assimulo.solvers import CVode | |
from assimulo.problem import Explicit_Problem | |
from scipy.integrate import odeint | |
from scipy.optimize import fmin_l_bfgs_b | |
import numpy as np | |
import nlopt | |
import matplotlib.pyplot as plt | |
outside_variable = 'JIMMY' | |
def mm_scipy(y, t, *args): | |
Vmax = args[0][0] | |
km = args[0][1] | |
St = args[0][2] | |
P = y[0] | |
S = St - P | |
dP = Vmax * (S / (S+km)) | |
return dP | |
def mm_assimulo(t, y, p): | |
Vmax = p[0] | |
km = p[1] | |
St = p[2] | |
P = y | |
S = St - P | |
dP = Vmax * (S / (S+km)) | |
dP = np.array(dP) | |
return dP | |
# Parameters MM | |
Vmax = 1 | |
km = 3 | |
St = 10 | |
p0 = np.array([Vmax, km, St]) | |
n_params = len(p0) | |
# Initial Conditions MM | |
y0 = [0.1] | |
yS0 = np.array([[0.0], [0.0], [0.0]]) | |
exp_mod = Explicit_Problem(mm_assimulo, y0 = y0, p0 = p0) | |
exp_mod.yS0 = yS0 | |
exp_sim = CVode(exp_mod) | |
exp_sim.iter = 'Newton' | |
exp_sim.discr = 'BDF' | |
exp_sim.rtol = 1e-7 | |
exp_sim.atol = 1e-6 | |
exp_sim.pbar = [1,1,1] #pbar is used to estimate the tolerances for the parameters | |
exp_sim.report_continuously = True #Need to be able to store the result using the interpolate methods | |
exp_sim.sensmethod = 'SIMULTANEOUS' #Defines the sensitvity method used | |
exp_sim.suppress_sens = False #Dont suppress the sensitivity variables in the error test. | |
t, assi_y = exp_sim.simulate(100) #Simulate 100 seconds | |
sci_y = odeint(mm_scipy, y0, t, args = (p0,)) | |
plt.plot(t, assi_y, 'bo') | |
plt.plot(t, sci_y, 'r--') | |
# Ok - exactly same results. | |
n_steps = len(t) | |
# Generate random data: | |
noisy_y = (assi_y + np.random.randn(n_steps, 1))[::15] | |
noisy_t = t[::15] | |
# Create a function that takes as an input a vector of parameters, | |
# and returns RSS and gradient, as a function of that vector: | |
exp_mod = Explicit_Problem(mm_assimulo, y0 = y0, | |
p0 = np.array([0.0, 0, 0])) | |
exp_mod.yS0 = yS0 | |
exp_sim = CVode(exp_mod) | |
exp_sim.iter = 'Newton' | |
exp_sim.discr = 'BDF' | |
exp_sim.rtol = 1e-7 | |
exp_sim.atol = 1e-6 | |
exp_sim.pbar = [1,1,1] #pbar is used to estimate the tolerances for the parameters | |
exp_sim.report_continuously = True #Need to be able to store the result using the interpolate methods | |
exp_sim.sensmethod = 'SIMULTANEOUS' #Defines the sensitvity method used | |
exp_sim.suppress_sens = False | |
exp_sim.verbosity = 50 | |
def calc_rss_and_grad(p): | |
exp_sim.reset() | |
#exp_sim.p = p | |
exp_sim.p0 = p | |
t, assi_y = exp_sim.simulate(100) #Simulate 100 seconds | |
n_steps = len(t) | |
# Sensitivities: | |
sens = np.empty((n_steps, n_params)) | |
for i in range(n_params): | |
sens[:, i] = np.array(exp_sim.p_sol[i]).flatten() | |
t_idx = np.searchsorted(t, noisy_t) | |
t_idx[t_idx>len(t)-1] = len(t)-1 | |
res = assi_y[t_idx] - noisy_y | |
# Calculate gradient at every timepoint: | |
# It's (f(p)_i - y_i) * df(p)/dp_j - last term is sensitivity | |
gradient = res * sens[t_idx, :] | |
gradient[np.isnan(gradient)] = 0 | |
# Sum across timepoints | |
gradient = np.sum(gradient, axis = 0) | |
rss = np.sum(res**2) | |
return rss, gradient | |
def nlopt_calc_rss_and_grad(p, grad): | |
exp_sim.reset() | |
#exp_sim.p = p | |
exp_sim.p0 = p | |
t, assi_y = exp_sim.simulate(100) #Simulate 100 seconds | |
n_steps = len(t) | |
# Sensitivities: | |
sens = np.empty((n_steps, n_params)) | |
for i in range(n_params): | |
sens[:, i] = np.array(exp_sim.p_sol[i]).flatten() | |
t_idx = np.searchsorted(t, noisy_t) | |
t_idx[t_idx>len(t)-1] = len(t)-1 | |
res = assi_y[t_idx] - noisy_y | |
# Calculate gradient at every timepoint: | |
# It's (f(p)_i - y_i) * df(p)/dp_j - last term is sensitivity | |
gradient = res * sens[t_idx, :] | |
gradient[np.isnan(gradient)] = 0 | |
# Sum across timepoints | |
gradient = np.sum(gradient, axis = 0) | |
rss = np.sum(res**2) | |
if grad.size > 0: | |
grad[:] = gradient | |
return rss | |
x_bfgs, f, d = fmin_l_bfgs_b(calc_rss_and_grad, | |
x0 = np.array([0.0, 0, 0]), fprime = None) | |
opt = nlopt.opt(nlopt.LD_MMA, 3) | |
opt.set_lower_bounds([0.0, 0.0, 0.0]) | |
opt.set_upper_bounds([10.0, 5.0, 15.0]) | |
opt.set_min_objective(nlopt_calc_rss_and_grad) | |
opt.set_maxtime(10) | |
x_nlopt = opt.optimize(np.array([0.0, 0, 0])) | |
minf = opt.last_optimum_value() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment