Skip to content

Instantly share code, notes, and snippets.

@FedericoV
Created October 30, 2013 15:06
Show Gist options
  • Save FedericoV/7234206 to your computer and use it in GitHub Desktop.
Save FedericoV/7234206 to your computer and use it in GitHub Desktop.
Sample Notebook
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from scipy.linalg import inv"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def additive_log_ratio(x):\n",
" y = np.log(x / x[-1])\n",
" return y[:-1]\n",
"\n",
"def make_fcns(alpha, mu, sigma, sigma_zero, mu_zero):\n",
" # alpha, mu, vectors\n",
" # sigma, matrix\n",
" # sigma_zero, matrix\n",
" # mu_zero, vector\n",
" # returns H(x), f1(x), f2(x)\n",
" \n",
" \n",
" def H(x):\n",
" y = additive_log_ratio(x)\n",
" val = np.exp((1/4 * alpha.T * sigma * alpha * (y - mu).T * inv(sigma) * (y - mu)\n",
" + 1/2 * ((y - mu_zero).T * inv(sigma_zero) * (y - mu_zero))))\n",
" return val\n",
"\n",
" def f1(x):\n",
" y = additive_log_ratio(x)\n",
" a = - 1/2 * ((y - mu_zero).T * inv(sigma_zero) * (y - mu_zero))\n",
" val = np.exp(a)\n",
" \n",
" return val\n",
" \n",
" def f2(x):\n",
" inv_prod = 1.0\n",
" for i in range(len(x)):\n",
" inv_prod *= 1/x[i]\n",
" return inv_prod\n",
" \n",
" \n",
" def h(x):\n",
" D = len(x)\n",
" val = np.zeros((1/2 * D * (D+1)))\n",
" val[:D] = np.log(x)\n",
" \n",
" s = D\n",
" for i in range(D-1):\n",
" for j in range(i+1, D):\n",
" val[s] =-1/2*(log(x[i]) - log(x[j]))**2\n",
" s += 1\n",
" val = np.matrix(val)\n",
" return val\n",
" \n",
" \n",
" def h_prime(x):\n",
" val = h(x).T\n",
" return val\n",
" \n",
" \n",
" def integrand_log_partition(x):\n",
" _H = H(x)\n",
" _f1 = f1(x)\n",
" _f2 = f2(x)\n",
" print \"H: %.3f\" %_H\n",
" print \"f1: %.3f\" %_f1\n",
" print \"f2: %.3f\" %_f2\n",
" val = _H * _f1 * _f2\n",
" return val\n",
" \n",
" \n",
" def integrand_hess_log_partion(x):\n",
" return integrand_log_partition(x) * h(x) * h_prime(x)\n",
"\n",
" return integrand_hess_log_partion"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 12
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Stupid Example:\n",
"alpha = np.matrix([1, 0, 0]).T\n",
"\n",
"mu = np.zeros_like(alpha)\n",
"mu_zero = np.zeros_like(alpha)\n",
"\n",
"sigma_zero = np.eye(3)\n",
"sigma = 4*sigma_zero\n",
"\n",
"x = np.array([0.25, 0.25, 0.25, 0.25])\n",
"x /= np.sum(x)\n",
"x = np.matrix(x).T"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 13
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"test_fun = make_fcns(alpha, mu, sigma, sigma_zero, mu_zero)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 14
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#print x\n",
"test_fun(x)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"H: 1.000\n",
"f1: 1.000\n",
"f2: 256.000\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 15,
"text": [
"matrix([[ 256.]])"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment