Created
February 10, 2020 02:37
-
-
Save Felflare/663d7dfbdee13b029908932a5e3a0cbe to your computer and use it in GitHub Desktop.
Sample function to generate text from XLNet model implemented by huggingface.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import XLNetTokenizer, XLNetLMHeadModel | |
import torch | |
import torch.nn.functional as F | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') | |
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased') | |
# We show how to setup inputs to predict a next token using a bi-directional context. | |
encoded_text = tokenizer.encode("Quick brown fox jumped over the lazy <mask>.", add_special_tokens=True) | |
input_ids = torch.tensor(encoded_text).unsqueeze(0) # We will predict the masked token | |
print(f'Input squence -- {encoded_text}') | |
# Input squence -- Input squence -- [9928, 3442, 17, 13894, 4651, 95, 18, 17634, 6, 17, 9, 4, 3] | |
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) | |
perm_mask[:, :, -5] = 1.0 # Make the "<mask>" token unseen to the model | |
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token | |
target_mapping[0, 0, -5] = 1.0 # Define a target to predict, 5th to last token -> the "<mask>" token | |
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) | |
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] | |
print(f'Output shape is -- {next_token_logits.shape}') | |
# Output shape is -- torch.Size([1, 1, 32000]) | |
temperature = 1 | |
top_p=0.9 | |
filter_value=-float('Inf') | |
# | |
next_token_logits = outputs[0][0, -1, :] / temperature | |
# | |
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
next_token_logits[indices_to_remove] = filter_value | |
candidate_tokens = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=5) #draw a sample from multinomial distribution of softmax. | |
print(f'Candidate token ids -- {candidate_tokens}') | |
# Candidate token ids -- tensor([2288, 29227, 2934, 8002, 303]) | |
print(f'Ids converted to tokens -- {tokenizer.decode(candidate_tokens,skip_special_tokens=True,clean_up_tokenization_spaces=False)}') | |
# Ids converted to tokens -- dog pony giant pile local | |
next_token = candidate_tokens[0] | |
print(f'Top candidate token -- {next_token}') | |
# Top candidate token -- 2288 | |
output_seq = input_ids.clone() | |
output_seq[0, -5] = next_token | |
print(f'Unmasked sequence of Ids -- {output_seq[0].tolist()}') | |
# Unmasked sequence of Ids -- [9928, 3442, 17, 13894, 4651, 95, 18, 17634, 2288, 17, 9, 4, 3] | |
tokens = tokenizer.decode(output_seq[0].tolist(), skip_special_tokens=True) | |
print(f'Unmasked sequence -- {tokens}') | |
# Unmasked sequence -- Quick brown fox jumped over the lazy dog. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment