Skip to content

Instantly share code, notes, and snippets.

View FelixChop's full-sized avatar

Félix Revert FelixChop

View GitHub Profile
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
data.fillna('missing', inplace=True)
# or, for instance, if your data is numeric
data.fillna(-9999, inplace=True)
from tqdm import notebook
notebook.tqdm().pandas()
def female_proportion(dataframe):
return (dataframe.Sex=='female').sum() / len(dataframe)
female_proportion(df)
df.merge(
df.loc[
df.Ticket.isin(
df.Ticket.value_counts().loc[
df.Ticket.value_counts()>1
].index
)
].groupby('Ticket').apply(female_proportion) \
.reset_index().rename(columns={0:'proportion_female'}),
how='left', on='Ticket'
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn_pandas import DataFrameMapper
from category_encoders import LeaveOneOutEncoder
imputer_Pclass = SimpleImputer(strategy='most_frequent', add_indicator=True)
imputer_Age = SimpleImputer(strategy='median', add_indicator=True)
imputer_SibSp = SimpleImputer(strategy='constant', fill_value=0, add_indicator=True)
imputer_Parch = SimpleImputer(strategy='constant', fill_value=0, add_indicator=True)
pd.DataFrame({
'variable': variables,
'coefficient': model.coef_[0]
}) \
.round(decimals=2) \
.sort_values('coefficient', ascending=False) \
.style.bar(color=['grey', 'lightblue'], align='zero')
group_id, grouped_data = generator.__next__()
print(group_id)
grouped_data
generator = df.groupby(['identifier']).__iter__()
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
one_hot_encoder_gender = OneHotEncoder(handle_unknown='ignore')
one_hot_encoder_gender.fit(train[['Sex']])
# For Embarked column, there are some missing values. We need to first fill them then encode them.
imputer_Embarked = SimpleImputer(strategy='most_frequent', add_indicator=True)
imputer_Embarked.fit(train[['Embarked']])
transformed_Embarked = \
pd.DataFrame(imputer_Embarked.transform(train[['Embarked']]),