برای شروع میتوانید یک دایرکتوری در سرور خارجی ایجاد کنید و وارد آن شوید.
mkdir vmess
cd vmess
برای شروع میتوانید یک دایرکتوری در سرور خارجی ایجاد کنید و وارد آن شوید.
mkdir vmess
cd vmess
| import os | |
| import shutil | |
| import gzip | |
| from pmaw import PushshiftAPI | |
| import datetime as dt | |
| from tqdm import tqdm | |
| import pandas as pd | |
| from pathlib import Path | |
| # Creating data folder |
| precision recall f1-score support | |
| Normal 0.98 0.69 0.81 234 | |
| Pneumonia 0.84 0.99 0.91 390 | |
| accuracy 0.88 624 | |
| macro avg 0.91 0.84 0.86 624 | |
| weighted avg 0.89 0.88 0.87 624 | |
| test_loss: 0.4041681243823125 |
| ========================================================================================== | |
| Layer (type:depth-idx) Output Shape Param # | |
| ========================================================================================== | |
| ├─Sequential: 1-1 [-1, 576, 8, 8] -- | |
| | └─ConvBNActivation: 2-1 [-1, 16, 128, 128] (464) | |
| | └─InvertedResidual: 2-2 [-1, 16, 64, 64] (744) | |
| | └─InvertedResidual: 2-3 [-1, 24, 32, 32] (3,864) | |
| | └─InvertedResidual: 2-4 [-1, 24, 32, 32] (5,416) | |
| | └─InvertedResidual: 2-5 [-1, 40, 16, 16] (13,736) | |
| | └─InvertedResidual: 2-6 [-1, 40, 16, 16] (57,264) |
| def load_pretrained(): | |
| pretrained_model = torchvision.models.mobilenetv3.mobilenet_v3_small(pretrained=True, | |
| progress=True) | |
| return pretrained_model.features | |
| class PneumoniaNet(nn.Module): | |
| def __init__(self, | |
| input_dim, | |
| finetune=False): |
| folds = RepeatedStratifiedKFold(n_splits=10, n_repeats=10) | |
| vectorizer = TomotopyLDAVectorizer(num_of_topics=15, workers=workers, min_df=min_df, | |
| rm_top=rm_top) | |
| clf = SVC() | |
| pca = PCA(n_components=0.95) | |
| pipe = Pipeline([("vectorizer", vectorizer), ("scalar", StandardScaler()), | |
| ("classifier", clf)]) | |
| results = cross_val_score(pipe, docs, y_true, cv=folds, n_jobs=2, verbose=1, |
| def plot_topic_clusters(ax, x2d, y, labels): | |
| ax.set_aspect("equal") | |
| colors = cm.get_cmap("Spectral", len(labels)) | |
| for i, l in enumerate(labels): | |
| c = colors(i / len(labels)) | |
| ax.scatter(x2d[y == i, 0], x2d[y == i, 1], color=c, label=l, alpha=0.7) | |
| ax.grid() | |
| ax.legend() | |
| ax.set(adjustable='box', aspect='equal') | |
| return ax |
| vectorizer = TomotopyLDAVectorizer(num_of_topics=num_of_topics, | |
| workers=workers, min_df=min_df, | |
| rm_top=rm_top) | |
| x_train = vectorizer.fit_transform(docs_train) | |
| x_test = vectorizer.transform(docs_test) |
| hdp_model = HDPModel(min_df=min_df, rm_top=rm_top) | |
| hdp_model.optim_interval = 5 | |
| for d in docs_train: | |
| hdp_model.add_doc(d) | |
| hdp_model.burn_in = 100 | |
| hdp_model.train(0, workers=workers) | |
| for i in range(0, 1000, 10): | |
| hdp_model.train(10, workers=workers) | |
| print('Iteration: {}\tLog-likelihood: {}\tNum. of topics: {}'.format(i, hdp_model.ll_per_word, hdp_model.live_k)) |
| processor = SpacyCleaner(chunksize=1000, workers=workers) | |
| docs = processor.transform(raw_docs) |