برای شروع میتوانید یک دایرکتوری در سرور خارجی ایجاد کنید و وارد آن شوید.
mkdir vmess
cd vmess
برای شروع میتوانید یک دایرکتوری در سرور خارجی ایجاد کنید و وارد آن شوید.
mkdir vmess
cd vmess
import os | |
import shutil | |
import gzip | |
from pmaw import PushshiftAPI | |
import datetime as dt | |
from tqdm import tqdm | |
import pandas as pd | |
from pathlib import Path | |
# Creating data folder |
precision recall f1-score support | |
Normal 0.98 0.69 0.81 234 | |
Pneumonia 0.84 0.99 0.91 390 | |
accuracy 0.88 624 | |
macro avg 0.91 0.84 0.86 624 | |
weighted avg 0.89 0.88 0.87 624 | |
test_loss: 0.4041681243823125 |
========================================================================================== | |
Layer (type:depth-idx) Output Shape Param # | |
========================================================================================== | |
├─Sequential: 1-1 [-1, 576, 8, 8] -- | |
| └─ConvBNActivation: 2-1 [-1, 16, 128, 128] (464) | |
| └─InvertedResidual: 2-2 [-1, 16, 64, 64] (744) | |
| └─InvertedResidual: 2-3 [-1, 24, 32, 32] (3,864) | |
| └─InvertedResidual: 2-4 [-1, 24, 32, 32] (5,416) | |
| └─InvertedResidual: 2-5 [-1, 40, 16, 16] (13,736) | |
| └─InvertedResidual: 2-6 [-1, 40, 16, 16] (57,264) |
def load_pretrained(): | |
pretrained_model = torchvision.models.mobilenetv3.mobilenet_v3_small(pretrained=True, | |
progress=True) | |
return pretrained_model.features | |
class PneumoniaNet(nn.Module): | |
def __init__(self, | |
input_dim, | |
finetune=False): |
folds = RepeatedStratifiedKFold(n_splits=10, n_repeats=10) | |
vectorizer = TomotopyLDAVectorizer(num_of_topics=15, workers=workers, min_df=min_df, | |
rm_top=rm_top) | |
clf = SVC() | |
pca = PCA(n_components=0.95) | |
pipe = Pipeline([("vectorizer", vectorizer), ("scalar", StandardScaler()), | |
("classifier", clf)]) | |
results = cross_val_score(pipe, docs, y_true, cv=folds, n_jobs=2, verbose=1, |
def plot_topic_clusters(ax, x2d, y, labels): | |
ax.set_aspect("equal") | |
colors = cm.get_cmap("Spectral", len(labels)) | |
for i, l in enumerate(labels): | |
c = colors(i / len(labels)) | |
ax.scatter(x2d[y == i, 0], x2d[y == i, 1], color=c, label=l, alpha=0.7) | |
ax.grid() | |
ax.legend() | |
ax.set(adjustable='box', aspect='equal') | |
return ax |
vectorizer = TomotopyLDAVectorizer(num_of_topics=num_of_topics, | |
workers=workers, min_df=min_df, | |
rm_top=rm_top) | |
x_train = vectorizer.fit_transform(docs_train) | |
x_test = vectorizer.transform(docs_test) |
hdp_model = HDPModel(min_df=min_df, rm_top=rm_top) | |
hdp_model.optim_interval = 5 | |
for d in docs_train: | |
hdp_model.add_doc(d) | |
hdp_model.burn_in = 100 | |
hdp_model.train(0, workers=workers) | |
for i in range(0, 1000, 10): | |
hdp_model.train(10, workers=workers) | |
print('Iteration: {}\tLog-likelihood: {}\tNum. of topics: {}'.format(i, hdp_model.ll_per_word, hdp_model.live_k)) |
processor = SpacyCleaner(chunksize=1000, workers=workers) | |
docs = processor.transform(raw_docs) |