Skip to content

Instantly share code, notes, and snippets.

@Fiooodooor
Last active March 31, 2025 16:15
Show Gist options
  • Save Fiooodooor/5ab9899c6124f7dc48a08a045b17dfe7 to your computer and use it in GitHub Desktop.
Save Fiooodooor/5ab9899c6124f7dc48a08a045b17dfe7 to your computer and use it in GitHub Desktop.
react
Github app https://x.com/i/grok/share/h9J47T4gWQbHHqUoCBWRTMAAF
https://x.com/i/grok/share/8wL0z4GdDHGNzd0z32mEmOIXz
https://x.com/i/grok/share/sJhqUoDxOSQan91WKHJgzEIGA
https://x.com/i/grok/share/voEEOfG7RcTvsuCgJ8GpOiwho
https://x.com/i/grok/share/iNgFl3BNVMnSLM0ArPg0HlEDZ

https://x.com/i/grok/share/pTnq3SPTWWSuZukCezWErEb8b

To address your query, I'll outline how to create an interactive node-based system using React Flow, where users can add and combine elements visually on the frontend. The system's state should be translatable to pseudo code on the backend upon command. Since the documents are referenced from the GitHub repository Media-Communications-Mesh under docs/sdk-json-proposal, I'll assume they propose a JSON-based format for defining media communication pipelines. Below, I'll describe the implementation in detail, covering the frontend setup, node interactions, serialization, and backend pseudo code generation. Overview of the System The goal is to create a visual editor where users can build media processing pipelines using nodes and connections. These pipelines correspond to components like inputs (e.g., video sources), processors (e.g., encoders, filters), and outputs (e.g., files, streams). The system should: Allow users to add nodes, configure their properties, and connect them. Serialize the flow into a JSON format that aligns with the SDK JSON proposal. Send the JSON to the backend on command (e.g., via a button click) to generate pseudo code reflecting the pipeline's logic. Display the pseudo code on the frontend for user feedback. Assumptions About the JSON Proposal Since I can't access the GitHub documents directly, I'll make reasonable assumptions based on typical media communication pipelines: The JSON defines a pipeline with components such as: Inputs: Media sources (e.g., video files, camera feeds). Processors: Processing steps (e.g., encoding, filtering). Outputs: Destinations (e.g., files, streams). Each component has configurable properties (e.g., file paths, encoding parameters, output formats). Components are connected in a sequence or graph, representing data flow. An example JSON might look like: json { "pipeline": [ { "type": "input", "id": "1", "properties": { "url": "http://example.com/video.mp4" } }, { "type": "processor", "id": "2", "properties": { "encoder": "h264", "bitrate": "2M" } }, { "type": "output", "id": "3", "properties": { "format": "mp4", "destination": "output.mp4" } } ], "connections": [ { "from": "1", "to": "2" }, { "from": "2", "to": "3" } ] } This JSON will guide how we design the React Flow nodes and connections. Step 1: Set Up the Frontend with React Flow First, create a React application and install React Flow: bash npx create-react-app media-flow cd media-flow npm install react-flow-renderer React Flow is a library for building node-based editors. We'll use it to create a canvas where users can drag, drop, and connect nodes. Step 2: Define Node Types We'll define three main node types corresponding to the pipeline components: InputNode: Represents media sources. ProcessorNode: Represents processing steps. OutputNode: Represents destinations. Each node will have: Handles for connections (e.g., source handles on the right, target handles on the left). Editable properties (e.g., input URL, encoder settings). Example Node Components Create custom node components in separate files. InputNode.js: jsx import React from 'react'; import { Handle } from 'react-flow-renderer';

const InputNode = ({ data, id }) => { return ( <div style={{ padding: 10, border: '1px solid black', borderRadius: 5, background: '#f0f0f0' }}> <Handle type="source" position="right" style={{ top: '50%' }} />

Input Node
URL: <input type="text" value={data.url || ''} onChange={(e) => data.onChange(id, { url: e.target.value })} /> ); };

export default InputNode; ProcessorNode.js: jsx import React from 'react'; import { Handle } from 'react-flow-renderer';

const ProcessorNode = ({ data, id }) => { return ( <div style={{ padding: 10, border: '1px solid black', borderRadius: 5, background: '#f0f0f0' }}> <Handle type="target" position="left" style={{ top: '50%' }} /> <Handle type="source" position="right" style={{ top: '50%' }} />

Processor Node
Encoder: <input type="text" value={data.encoder || ''} onChange={(e) => data.onChange(id, { encoder: e.target.value })} /> Bitrate: <input type="text" value={data.bitrate || ''} onChange={(e) => data.onChange(id, { bitrate: e.target.value })} /> ); };

export default ProcessorNode; OutputNode.js: jsx import React from 'react'; import { Handle } from 'react-flow-renderer';

const OutputNode = ({ data, id }) => { return ( <div style={{ padding: 10, border: '1px solid black', borderRadius: 5, background: '#f0f0f0' }}> <Handle type="target" position="left" style={{ top: '50%' }} />

Output Node
Format: <input type="text" value={data.format || ''} onChange={(e) => data.onChange(id, { format: e.target.value })} /> Destination: <input type="text" value={data.destination || ''} onChange={(e) => data.onChange(id, { destination: e.target.value })} /> ); };

export default OutputNode; Step 3: Set Up the Main App In App.js, set up the React Flow canvas and functionality to add nodes and connect them. jsx import React, { useState, useCallback } from 'react'; import ReactFlow, { ReactFlowProvider, addEdge, Controls } from 'react-flow-renderer'; import InputNode from './InputNode'; import ProcessorNode from './ProcessorNode'; import OutputNode from './OutputNode';

const nodeTypes = { input: InputNode, processor: ProcessorNode, output: OutputNode, };

const initialElements = [];

const App = () => { const [elements, setElements] = useState(initialElements); const [pseudoCode, setPseudoCode] = useState('');

const onConnect = useCallback((params) => setElements((els) => addEdge(params, els)), []);

const updateNodeData = (id, newData) => { setElements((els) => els.map((el) => { if (el.id === id) { return { ...el, data: { ...el.data, ...newData } }; } return el; }) ); };

const addNode = (type) => { const newNode = { id: ${type}-${Date.now()}, type, position: { x: Math.random() * 500, y: Math.random() * 500 }, data: { onChange: updateNodeData, // Initial properties url: '', encoder: '', bitrate: '', format: '', destination: '', }, }; setElements((els) => [...els, newNode]); };

const generateJson = async () => { const nodes = elements.filter((el) => el.type); const edges = elements.filter((el) => el.source);

const pipeline = nodes.map((node) => ({
  type: node.type,
  id: node.id,
  properties: node.data,
}));

const connections = edges.map((edge) => ({
  from: edge.source,
  to: edge.target,
}));

const flowJson = { pipeline, connections };

// Send JSON to backend
try {
  const response = await fetch('http://localhost:3001/generate-pseudo-code', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
    },
    body: JSON.stringify(flowJson),
  });
  const pseudoCodeText = await response.text();
  setPseudoCode(pseudoCodeText);
} catch (error) {
  console.error('Error generating pseudo code:', error);
  setPseudoCode('Error generating pseudo code.');
}

};

return ( <div style={{ height: '100vh', display: 'flex' }}> <div style={{ width: '70%' }}> <div style={{ marginBottom: 10 }}> <button onClick={() => addNode('input')}>Add Input <button onClick={() => addNode('processor')}>Add Processor <button onClick={() => addNode('output')}>Add Output Generate Pseudo Code <ReactFlow elements={elements} onConnect={onConnect} nodeTypes={nodeTypes} style={{ width: '100%', height: 'calc(100vh - 50px)' }} > <div style={{ width: '30%', padding: 20, borderLeft: '1px solid #ccc' }}>

Pseudo Code

{pseudoCode}
); };

export default App; Step 4: Set Up the Backend for Pseudo Code Generation For the backend, create a simple server (e.g., using Node.js and Express) to receive the JSON and generate pseudo code. First, install dependencies: bash mkdir backend cd backend npm init -y npm install express cors Create server.js: javascript const express = require('express'); const cors = require('cors'); const app = express();

app.use(cors()); app.use(express.json());

app.post('/generate-pseudo-code', (req, res) => { const { pipeline, connections } = req.body;

// Create a map of nodes for easier lookup const nodeMap = {}; pipeline.forEach((node) => { nodeMap[node.id] = node; });

// Find the starting node (no incoming connections) const startNode = pipeline.find( (node) => !connections.some((conn) => conn.to === node.id) );

let pseudoCode = ''; let currentNode = startNode;

// Traverse the pipeline linearly (for simplicity) while (currentNode) { pseudoCode += Process ${currentNode.type} with properties ${JSON.stringify( currentNode.properties, null, 2 ).replace(/\n/g, '\n ')}\n;

const nextConnection = connections.find((conn) => conn.from === currentNode.id);
if (nextConnection) {
  currentNode = nodeMap[nextConnection.to];
} else {
  currentNode = null;
}

}

res.send(pseudoCode); });

app.listen(3001, () => { console.log('Server running on http://localhost:3001'); }); Run the backend: bash node server.js Step 5: Putting It All Together Now, the system works as follows: Frontend: Users can add Input, Processor, and Output nodes using buttons. They can connect nodes by dragging handles to form a pipeline. Each node's properties can be edited via input fields. Clicking "Generate Pseudo Code" serializes the flow into JSON and sends it to the backend. Backend: Receives the JSON, traverses the pipeline based on connections, and generates pseudo code. Sends the pseudo code back to the frontend. Frontend (Again): Displays the pseudo code in a panel next to the React Flow canvas. Example Pseudo Code Output For the example JSON shown earlier, the backend might generate: Process input with properties { "url": "http://example.com/video.mp4" } Process processor with properties { "encoder": "h264", "bitrate": "2M" } Process output with properties { "format": "mp4", "destination": "output.mp4" } Enhancements and Considerations Validation: Add rules to ensure valid connections (e.g., inputs connect to processors, processors to outputs). Complex Pipelines: The current pseudo code generation assumes a linear pipeline. For branching or parallel flows, modify the backend logic to handle multiple paths. Styling: Improve node and canvas styling for better user experience. Error Handling: Add robust error handling for network requests and invalid configurations. JSON Schema: Align the JSON structure closely with the SDK proposal from the GitHub documents for accuracy. This implementation provides an interactive node-based system using React Flow, with the ability to reflect the flow on the backend as pseudo code, fulfilling the requirements of your query.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment