Last active
July 26, 2017 14:38
-
-
Save FloWuenne/11409997ad826ef429fec511f779cf40 to your computer and use it in GitHub Desktop.
Plot mean expression of a gene vs other parameters and highlight specific genes using ggrepel
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Use scater to investigate and annotate gene and cluster properties | |
```{r} | |
library(scater) | |
## Create new SCE object from the seurat expression object | |
fData <- new("AnnotatedDataFrame", data = [email protected]) | |
seurat_scater_sce <- newSCESet(exprsData = as.matrix(expression_seurat@data), phenoData = fData, | |
lowerDetectionLimit=0.01, | |
logExprsOffset=1) | |
seurat_scater_sce <- calculateQCMetrics(seurat_scater_sce) | |
``` | |
```{r} | |
library(ggrepel) | |
## Put the feature Data into variable called gene_info | |
gene_info <- fData(seurat_scater_sce) | |
## Define a group of genes of interest | |
genes_of_interest <- c("") | |
## Write a table that contains some useful stats for these genes | |
genes_of_interest_data <- subset(gene_info,rownames(gene_info) %in% genes_of_interest) | |
write.table(params_goi,file="Feature_params.genes_of_interest.txt", | |
row.names=T, | |
col.names=T, | |
quote=F, | |
sep="\t") | |
## Plot the position of genes of interest in relation to all other genes in the distribution of mean gene expression vs pct dropout | |
mean_exprs_vs_drpt <- ggplot(gene_info,aes(log10(mean_exprs),pct_dropout)) + | |
geom_point(fill="white",col="grey",size=1.5) + | |
geom_point(data= genes_of_interest_data, | |
color="red", | |
size=1.5) + | |
geom_text_repel( | |
data = genes_of_interest_data, | |
aes(label = rownames(genes_of_interest_data)), | |
size = 5, | |
box.padding = unit(0.35, "lines"), | |
point.padding = unit(0.3, "lines") | |
) + | |
xlab("log10 of mean expression") + | |
ylab("% Total expression") | |
ggsave(mean_exprs_vs_drpt,file="mean_exprs_vs_drpt.svg") | |
## Plot the position of genes of interest in relation to all other genes in the distribution of mean gene expression vs pct_total_expression | |
mean_exprs_vs_pcttotal <- ggplot(gene_info,aes(log10(mean_exprs),pct_total_exprs)) + | |
geom_point(fill="white", | |
col="grey", | |
pch=21, | |
alpha=0.8, | |
size=1.5) + | |
geom_point(data= genes_of_interest_data, | |
fill="red", | |
col="black", | |
pch=21, | |
size=1.5) + | |
geom_text_repel( | |
data = genes_of_interest_data, | |
aes(label = rownames(genes_of_interest_data)), | |
size = 5, | |
box.padding = unit(0.35, "lines"), | |
point.padding = unit(0.3, "lines") | |
) + | |
xlab("log10 of mean expression") + | |
ylab("% Total expression") | |
ggsave(mean_exprs_vs_pcttotal,file="mean_exprs_vs_pcttotal.svg") | |
detach("package:scater", unload=TRUE) | |
detach("package:ggrepel", unload=TRUE) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment