-
-
Save FloWuenne/1f401b4a2ee8d902ae0ff1f801589d96 to your computer and use it in GitHub Desktop.
Use Seurat to find specific markers of each cell type (modified from Dan Skelly)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(Seurat) | |
# Find specific markers for each cell type | |
# Find specific markers for each cell type | |
celltypes <- unique(expression_seurat_subset@ident) # list of cell types (unique ident labels of Seurat object) | |
obj <- expression_seurat_subset # Seurat object | |
specific_markers <- NULL | |
# First we do all pairwise comparisons and retain any markers that | |
# are even somewhat higher in the cell type of interest | |
for (celltype1 in celltypes) { | |
print("Now working on cluster...") | |
print(celltype1) | |
other_types <- setdiff(celltypes, celltype1) | |
celltype_markers <- NULL | |
for (celltype2 in other_types) { | |
markers <- FindMarkers(obj, ident.1=celltype1, ident.2=celltype2, | |
only.pos=TRUE, | |
test.use="roc") %>% | |
rownames_to_column("gene") %>% | |
mutate(ident.2=celltype2) | |
celltype_markers <- rbind(celltype_markers, markers) | |
markers | |
} | |
celltype_markers$ident.1 <- celltype1 | |
specific_markers <- rbind(specific_markers, celltype_markers) | |
} | |
write.table(specific_markers, | |
file="../Marker/Specific_markers_custom.tsv", | |
sep="\t", | |
row.names=FALSE, | |
col.names=TRUE, | |
quote=FALSE) | |
# In specific_markers data.frame, ident.1 is which cell pop the marker is tagging | |
# and ident.2 is which other cell pop we are contrasting with | |
# | |
# We want markers that are considerably higher in ident.1 than in any other pop. | |
# As a basic filter we require any marker for ident.1 to be expressed in <50% of | |
# cells of each of the other cell types. | |
# | |
# Here we will filter to get the top 10 markers for each cell type | |
topN <- 5 | |
npop <- length(celltypes) | |
final_markers <- mutate(specific_markers, pct_diff=pct.1 - pct.2) %>% | |
filter(n() == npop - 1, all(pct.2 < 0.5)) %>% | |
summarize(mean_AUC=mean(myAUC)) %>% | |
mutate(cluster=ident.1) %>% | |
filter(mean_AUC > 0.65) %>% | |
group_by(cluster) %>% | |
arrange(desc(mean_AUC)) %>% | |
do(head(., topN)) | |
write.table(specific_markers, | |
file="../Marker/Final_markers_custom.tsv", | |
sep="\t", | |
row.names=FALSE, | |
col.names=TRUE, | |
quote=FALSE) | |
png(filename="../Marker/Dotplot_custom_markers_top5.png", width=1600, height=1400, bg = "white", res = 150) | |
DotPlot(expression_seurat_subset, | |
unique(final_markers$gene), | |
x.lab.rot = TRUE) | |
dev.off() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment