Created
August 2, 2017 14:23
-
-
Save FloWuenne/656aad5b050d0cb5c15ad8dace8d90f1 to your computer and use it in GitHub Desktop.
Visualize the output from GatherMolecularBarcodeDistributionByGene to assess UMI duplication rates
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(stringr) | |
## Look at the number of duplicated and unique UMIs per Cell | |
umi_by_gene <- read.table("UMI_by_gene_dist.tab",sep="\t",header=T) | |
## Count number of duplicated UMIs per cell | |
num_of_duplicated_umis_per_cell <- umi_by_gene %>% | |
group_by(Cell.Barcode) %>% | |
subset(Num_Obs > 1) %>% | |
count() | |
colnames(num_of_duplicated_umis_per_cell) <- c("Cell.Barcode","Num_duplicated_UMIs") | |
## Count number of unique UMIs per cell | |
unique_umis_per_cell <- umi_by_gene %>% | |
group_by(Cell.Barcode) %>% | |
subset(Num_Obs == 1) %>% | |
count() | |
colnames(unique_umis_per_cell) <- c("Cell.Barcode","Num_of_unique_UMIs") | |
## Calculate the mean number of duplications per duplicated UMI | |
mean_duplications_per_cell <- umi_by_gene %>% | |
group_by(Cell.Barcode) %>% | |
subset(Num_Obs > 1) %>% | |
summarise(Mean_of_duplications = mean(Num_Obs)) | |
## Join unique and duplicated UMI counts | |
joined_umi_counts <- full_join(unique_umis_per_cell,num_of_duplicated_umis_per_cell,by="Cell.Barcode") | |
joined_umi_counts <- full_join(joined_umi_counts,mean_duplications_per_cell,by="Cell.Barcode") | |
## Calculate the percentage of UMI duplication | |
## Calculate the total number of UMIs as well as the percent of duplicated UMIs | |
joined_umi_counts <- joined_umi_counts %>% | |
group_by(Cell.Barcode) %>% | |
mutate(Total_number_individual_UMIs_detected = sum(Num_duplicated_UMIs,Num_of_unique_UMIs)) %>% | |
mutate(Percent_duplicate_UMIs = Num_duplicated_UMIs/Total_number_individual_UMIs_detected*100) %>% | |
mutate(Percent_unique_UMIs = Num_of_unique_UMIs/Total_number_individual_UMIs_detected*100) | |
## Plot correlation between duplicated and unique UMIs per cell | |
unique_vs_duplicated_Umis <- ggplot(joined_umi_counts,aes(Num_duplicated_UMIs,Num_of_unique_UMIs,text=paste("Mean_UMI_duplications=",round(Mean_of_duplications,2),sep=""))) + | |
geom_point(size=2,fill="grey",colour="darkgrey",pch=21) + | |
theme_light() + | |
labs(title="Duplicated vs unique UMIs per Cell", | |
x = "Number of duplicated UMIs", | |
y = "Number of unique UMIs", | |
subtitle = "Every point represents a Cell! Coloured by Percentage of duplicated UMIs for Cell barcode") + | |
theme(plot.title = element_text(lineheight=.8, face="bold")) | |
ggplotly(unique_vs_duplicated_Umis) | |
``` | |
### **Duplicated UMIs vs unique UMIs per Gene** | |
```{r} | |
## Look at the number of duplicated and unique UMIs per Gene | |
## Count number of duplicated UMIs per cell | |
num_of_duplicated_umis_per_gene <- umi_by_gene %>% | |
group_by(Gene) %>% | |
subset(Num_Obs > 1) %>% | |
count() | |
colnames(num_of_duplicated_umis_per_gene) <- c("Gene","Num_duplicated_UMIs") | |
## Count number of unique UMIs per cell | |
unique_umis_per_gene <- umi_by_gene %>% | |
group_by(Gene) %>% | |
subset(Num_Obs == 1) %>% | |
count() | |
colnames(unique_umis_per_gene) <- c("Gene","Num_of_unique_UMIs") | |
## Calculate the mean number of duplications per duplicated UMI | |
mean_duplications_per_cell <- umi_by_gene %>% | |
group_by(Gene) %>% | |
subset(Num_Obs > 1) %>% | |
summarise(Mean_of_duplications = mean(Num_Obs)) | |
## Join duplicated and unique counts into one tibble | |
joined_umi_gene_counts <- full_join(num_of_duplicated_umis_per_gene,unique_umis_per_gene,by="Gene") | |
joined_umi_gene_counts <- full_join(joined_umi_gene_counts,mean_duplications_per_cell,by="Gene") | |
## Calculate the total number of UMIs as well as the percent of duplicated UMIs | |
joined_umi_gene_counts <- joined_umi_gene_counts %>% | |
group_by(Gene) %>% | |
mutate(Total_number_individual_UMIs_detected = sum(Num_duplicated_UMIs,Num_of_unique_UMIs)) %>% | |
mutate(Percent_duplicate_UMIs = Num_duplicated_UMIs/Total_number_individual_UMIs_detected*100) %>% | |
mutate(Percent_unique_UMIs = Num_of_unique_UMIs/Total_number_individual_UMIs_detected*100) | |
## Sort table based on Total number of UMIs per Cells | |
joined_umi_gene_counts <- joined_umi_gene_counts %>% | |
arrange(desc(Num_of_unique_UMIs)) | |
umi_duplication_by_gene <- ggplot(joined_umi_gene_counts,aes(Num_duplicated_UMIs,Num_of_unique_UMIs,text=paste("Gene = ",Gene,sep=""))) + | |
geom_point(size=2,fill="grey",colour="darkgrey",pch=21) + | |
theme_light() + | |
labs(title="Duplicated vs Unique UMIs per Gene", | |
x = "Number of duplicated UMIs", | |
y = "Number of unique UMIs", | |
subtitle = "Every represents is a Gene!") + | |
theme(plot.title = element_text(lineheight=.8, face="bold")) | |
ggplotly(umi_duplication_by_gene) | |
``` | |
Column {data-width=600} | |
------------------------------------- | |
### **Distribution of duplicated UMIs per cell** | |
```{r,echo=FALSE} | |
ggplot(joined_umi_counts,aes(log10(Mean_of_duplications))) + | |
geom_histogram(colour="black",fill="grey50") + | |
theme_light() + | |
labs(title="Distribution of mean UMI duplication per Cell", | |
subtitle = "For all duplicated UMIs, mean of duplication events was calculated per Cell.", | |
x = "log10 of mean UMI duplications events per Cell)", | |
y = "Number of cells") + | |
theme(plot.title = element_text(lineheight=.8, face="bold")) | |
``` | |
### **Distribution of duplicate UMIs per cell** | |
```{r,echo=FALSE} | |
ggplot(joined_umi_counts,aes(Percent_duplicate_UMIs)) + | |
geom_histogram(colour="black",fill="grey50") + | |
theme_light() + | |
labs(title="Percentage of duplicated UMIs per cell", | |
subtitle = "Distribution of percentage of duplicated UMIs", | |
x = "Duplicate UMIs (%)", | |
y = "Number of cells") + | |
theme(plot.title = element_text(lineheight=.8, face="bold")) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment